Hưởng ứng phong trào kế hoạch nhỏ, ba lớp 7A, 7B, 7C có 130 học sinh tham gia. Mỗi học sinh lớp 7A góp 2 kg, mỗi học sinh lớp 7B góp 3 kg, học sinh lớp 7C góp 4 kg. Tính số học sinh tham gia phong trào của mỗi lớp đó, biết số giấy thu được của ba lớp đó bằng nhau.
Hưởng ứng phong trào kế hoạch nhỏ, ba lớp 7A, 7B, 7C có 130 học sinh tham gia. Mỗi học sinh lớp 7A góp 2 kg, mỗi học sinh lớp 7B góp 3 kg, học sinh lớp 7C góp 4 kg. Tính số học sinh tham gia phong trào của mỗi lớp đó, biết số giấy thu được của ba lớp đó bằng nhau.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Gọi \(x,\,\,y,\,\,z\) (học sinh) lần lượt là số học sinh của ba lớp 7A, 7B, 7C \(\left( {x,\,\,y,\,\,z \in \mathbb{N}*} \right).\)
Tổng số học sinh của ba lớp là 130 học sinh nên ta có \(x + y + z = 130\).
Vì số giấy thu được của ba lớp bằng nhau nên số giấy của mỗi học sinh tỉ lệ nghịch với số học sinh nên ta có: \(2x = 3y = 4z\) suy ra \(\frac{x}{6} = \frac{y}{4} = \frac{z}{3}\).
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6} = \frac{y}{4} = \frac{z}{3} = \frac{{x + y + z}}{{6 + 4 + 3}} = \frac{{130}}{{13}} = 10\).
Do đó \[\frac{x}{6} = 10 \Rightarrow x = 6\,\,.\,\,10 = 60\] (thỏa mãn)
\(\frac{y}{4} = 10 \Rightarrow y = 4\,\,.\,\,10 = 40\) (thỏa mãn)
\(\frac{z}{3} = 10 \Rightarrow z = 3\,\,.\,\,10 = 30\) (thỏa mãn)
Vậy số học sinh tham gia phong trào ở các lớp 7A, 7B, 7C lần lượt là 60 học sinh; 40 học sinh và 30 học sinh.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(D\) là trọng tâm của \(\Delta BAF\) nên \(AD\) là một đường trung tuyến của \(\Delta BAF\).
Vì \(AD\) cắt \(BF\) tại \(N\) nên \(FN = BN = \frac{1}{2}BF\). (1)
Chứng minh tương tự, ta được \(AM = MC = \frac{1}{2}AC\). (2)
Vì \(AO\) là đường trung tuyến của tam giác \(ABC\) nên \(O\) là trung điểm của \(BC\) hay \(OB = OC\).
Xét \(\Delta OFB\) và \(\Delta OAC\) có:
\(OF = OA\) (giả thiết)
\(\widehat {BOF} = \widehat {AOC}\) (hai góc đối đỉnh)
\(OB = OC\) (chứng minh trên)
Do đó \(\Delta OFB = \Delta OAC\) (c.g.c)
Suy ra \(BF = AC\) (hai cạnh tương ứng) (3)
Và \(\widehat {OFB} = \widehat {OAC}\) (hai góc tương ứng) hay \(\widehat {OFN} = \widehat {OAM}\).
Từ (1), (2) và (3) suy ra \(AM = FN\).
Xét \(\Delta AOM\) và \(\Delta FON\) có:
\(AM = FN\) (chứng minh trên)
\(\widehat {OFN} = \widehat {OAM}\) (chứng minh trên)
\(OF = OA\) (giả thiết)
Do đó \(\Delta AOM = \Delta FON\) (c.g.c)
Suy ra \(\widehat {AOM} = \widehat {FON}\) (hai góc tương ứng)
Mà \(\widehat {AOM} + \widehat {FOM} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {FON} + \widehat {FOM} = 180^\circ \).
Do đó, ba điểm \(M,\,\,O,\,\,N\) thẳng hàng.
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \[R(x) = P(x) - Q(x)\]\[ = \left( {{x^5} + 2{x^3} - {x^2} + 6} \right) - \left( { - 2{x^4} + {x^3} + 3{x^2} + 6} \right)\]
\[ = {x^5} + 2{x^3} - {x^2} + 6 + 2{x^4} - {x^3} - 3{x^2} - 6\]
\[ = {x^5} + 2{x^4} + \left( {2{x^3} - {x^3}} \right) - \left( {{x^2} + 3{x^2}} \right) + \left( {6 - 6} \right)\]
\[ = {x^5} + 2{x^4} + {x^3} - 4{x^2}\].
Vậy \[R(x) = {x^5} + 2{x^4} + {x^3} - 4{x^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.