Câu hỏi:

12/02/2026 11 Lưu

Dân số thế giới được tính theo công thức \(S = A\). e \(^{nr}\) trong đó \(A\) là dân số của năm lấy làm mốc tính, \(S\) là dân số sau \(n\) năm, \(r\) là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là \(1,47\% \) một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

93713000 người

Ta có: \(S = A \cdot {e^{nr}} \Leftrightarrow {e^{nr}} = \frac{S}{A} \Leftrightarrow nr = \ln \frac{S}{A} \Leftrightarrow n = \frac{1}{r}\ln \frac{S}{A}\)

với \(S = 93713700\) người; \(A = 80902400\) người; \(r = \frac{{1,47}}{{100}} = 0,0147/\)năm.

Suy ra \(n = \frac{1}{{0,0147}}\ln \frac{{93713000}}{{80902400}} \approx 10\).

Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đầu tiên ta tính giá trị của ngôi nhà sau \(12\) năm:

Giá trị ngôi nhà sau 2 năm: \({10^9} + {10^9}.0,05 = {10^9}.\left( {1 + 0,05} \right)\)

Giá trị ngôi nhà sau 4 năm: \({10^9} + {10^9}.0,05 + \left( {{{10}^9} + {{10}^9}.0,05} \right).0,05 = {10^9}.{\left( {1 + 0,05} \right)^2}\)

Lần lượt ta có giá trị ngôi nhà sau 12 năm: \({10^9} + {10^9}.0,05 + \left( {{{10}^9} + {{10}^9}.0,05} \right).0,05 = {10^9}.{\left( {1 + 0,05} \right)^6}\)

Sau khi chi tiêu hàng tháng thì số tiền tiết kiệm là \(40\% \) lương.

Có nghĩa là trong hai năm \(2023 - 2024\), số tiền tiết kiệm là: \(24.0,4a\)

Trong hai năm tiếp theo \(2025 - 2026\), số tiền tiết kiệm là: \(24.0,4a\left( {1 + 0,01} \right)\)

Tương tự vậy số tiền tiết kiệm được trong 12 năm là: \(24.0,4a\left[ {1 + \left( {1 + 0,1} \right) + {{\left( {1 + 0,1} \right)}^2} + {{\left( {1 + 0,1} \right)}^3} + {{\left( {1 + 0,1} \right)}^4} + {{\left( {1 + 0,1} \right)}^5}} \right] = 74,069856a\)

Để mua được nhà thì số tiền trên phải bằng số tiền sau \(12\) năm: \(74,069856a = {10^9}.1,{05^6} \Rightarrow a = 18092321\)

Vậy số \(a\) gần bằng \(18092000\).

Lời giải

Theo đề bài ta có tọa độ các điểm là \(A\left( {0;4} \right)\,,\,B\left( {{{\log }_a}4;4} \right)\) và \(C\left( {{{\log }_b}4;4} \right)\).

Theo giả thiết \(AC = 3AB \Leftrightarrow {\log _b}4 = 3{\log _a}4\)\( \Leftrightarrow \frac{1}{{{{\log }_4}b}} = \frac{3}{{{{\log }_4}a}}\)

\( \Leftrightarrow {\log _4}a = 3{\log _4}b\, \Leftrightarrow \,a = {b^3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\mathbb{R}\].    
B. \[\left( { - \infty ; - \frac{3}{2}} \right]\]. 
C. \[\left[ {\frac{3}{2}; + \infty } \right)\].     
D. \[\left( {1; + \infty } \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Hàm số \(y = {\log _3}x\) đồng biến trên tập xác định.

Đúng
Sai

b) Đồ thị các hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) và \(y = {\log _{\sqrt 2 }}x\) cắt nhau tại hai điểm phân biệt.

Đúng
Sai

c) Hàm số \(y = {a^x}\), \(\left( {a > 0,a \ne 1} \right)\) là hàm số chẵn.

Đúng
Sai
d) Đồ thị các hàm số \(y = {3^x}\) và \(y = {\left( {\frac{1}{3}} \right)^x}\) đối xứng với nhau qua trục tung \(Oy\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[D = \left( { - 1; + \infty } \right)\].                                                   

B. \[D = \left( { - 2; + \infty } \right)\].

C. \[D = \left( { - \infty ; - 2} \right) \cup \left( { - 1; + \infty } \right)\].     
D. \[D = \left( { - \infty ; - 2} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP