CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tam giác vuông \(ABC\), theo tỉ số lượng giác, ta có: \({\rm{cos}}\,B = \frac{{AB}}{{BC}}\).

Suy ra \(BC = \frac{{AB}}{{{\rm{cos}}\,B}} = \frac{{50}}{{{\rm{cos}}\,50^\circ }} \approx 77,8\,\,{\rm{(m}}).\)

Vậy \(BC \approx 77,8\,\,{\rm{m}}.\)

b) Bán kính ngoài của đĩa CD là: \(R = \frac{{120}}{2} = 60{\rm{\;(mm)}} = 6{\rm{\;(cm)}}{\rm{.}}\)

Bán kính lỗ tròn rỗng bên trong là \(r = \frac{{15}}{2} = 7,5{\rm{\;(mm)}} = 0,75{\rm{\;(cm)}}{\rm{.}}\)

Diện tích bề mặt đĩa (hình vành khăn) là:

\(S = \pi \left( {{R^2} - {r^2}} \right) = 3,14 \cdot \left( {{6^2} - 0,{{75}^2}} \right) \approx 111,27{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích bề mặt của đĩa CD khoảng \(111,27{\rm{\;c}}{{\rm{m}}^2}.\)

Lời giải

Cho đường tròn \(\left( O \right),\) từ điểm (ảnh 1)

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(AB = AC\) nên tam giác \(ABC\) cân tại \(A.\)

Hơn nữa, ta có \(\widehat {BAC} = 60^\circ \) nên tam giác \(ABC\) là tam giác đều.

Vì \(AB,\,\,AC\) là các tiếp tuyến nên \(AB \bot OB\,;\,\,AC \bot OC.\)

Xét tứ giác \(ABOC\) có \[\widehat {BAC} + \widehat {ABO} + \widehat {ACO} + \widehat {BOC} = 360^\circ \].

Suy ra \[\widehat {BOC} = 360^\circ - \widehat {BAC} - \widehat {ABO} - \widehat {ACO} = 360^\circ - 90^\circ - 90^\circ - 60^\circ = 120^\circ .\]

Do đó sđ  BC (nhỏ) \[ = \widehat {BOC} = 120^\circ \] suy ra sđ  BC (lớn) \[ = 360^\circ - \] (nhỏ)\[ = 240^\circ .\]

Vậy tam giác \(ABC\) đều; \[\widehat {BOC} = 120^\circ \,;\] sđ  BC (lớn) \[ = 240^\circ .\]

b) Tam giác \(ABC\) cân, theo tính chất hai tiếp tuyến cắt nhau thì \(AO\) là phân giác \(\widehat {BAC}\)

 nên \(AO\) là đường cao, tức là AOBC.(1)

Ta có \(OB = OC = OE = \frac{1}{2}CE,\) theo tính chất trung tuyến tam giác vuông thì tam giác \(BCE\) vuông tại \(B\) tức là BEBC.(2)

Từ (1) và (2) suy ra \(BE\,{\rm{//}}\,AO.\)

Dễ thấy \(\widehat {BOM} = 60^\circ \) và \(OB = OM\) nên \(\Delta OBM\) đều, suy ra MO=MO=BO.(3)

Hơn nữa, dễ thấy \(\widehat {BOE} = 180^\circ - \widehat {BOC} = 60^\circ \) và \(OB = OE\) nên \(\Delta OBE\) đều hay OE=OB=BE.(4)

Từ (3) và (4) suy ra \(MB = BE = EO = OM\) nên tứ giác \(MBEO\) là hình thoi, suy ra \(ME \bot OB.\)

Mặt khác, \(OB \bot AB\) nên \(ME\,{\rm{//}}\,AB.\) Kết hợp \(BE\,{\rm{//}}\,MA\) (vì \(BE\,{\rm{//}}\,AO\,).\)

Do đó \(ABEM\) là hình bình hành nên \(AE\) đi qua trung điểm của đoạn thẳng \(BM.\)

Vậy \(BE\,{\rm{//}}\,AO\) và \(AE\) đi qua trung điểm của đoạn thẳng \(BM.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\rm{cot}}\,B = \frac{3}{4}\). 
B. \({\rm{cos}}\,A = \frac{3}{4}\). 
C. \({\rm{tan}}\,B = \frac{3}{4}\). 
D. \({\rm{sin}}\,A = \frac{3}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(a \ge 0\). 
B. \(a \in \mathbb{Z}\). 
C. \(a \in \mathbb{R}\).
D. \(a > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP