Câu hỏi:

19/02/2026 14 Lưu

Người ta sử dụng công thức \(S = A \cdot {e^{n \cdot r}}\) để dự báo dân số của một quốc gia, trong đó \(A\) là số dân của năm lấy làm mốc tính, \(S\) là số dân sau \(n\) năm và \(r\) là tî lệ gia tăng dân số hàng năm. Biết rằng năm 2001, dân số của Việt Nam là 78685800 người. Giả sử tỉ lệ tăng dân số hàng năm không đổi là \(1,2\% \). Hãy tính xem dân số nước ta đạt 110 triệu người vào năm nào?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo công thức tăng trưởng mũ: \(S = A \cdot {e^{n \cdot r}}\)

\( \Rightarrow 110000000 = 78685800 \cdot {e^{1,2\%  \cdot n}} \Leftrightarrow n = \frac{1}{{1,2\% }}\ln \frac{{110000000}}{{78685800}} \simeq 27,91\)

\( \Rightarrow \) Sau 28 năm thì dân số Việt Nam đạt 110 triệu người.

Vậy dân số nước ta đạt 110 triệu người vào năm 2029.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(r = 6\%  = 0,06;1\) tháng \( = \frac{1}{{12}}\) năm.

Công thức tính tổng số tiền lãi và vốn sau \(t\) năm là \(T = A \cdot {e^{rt}}\)

Số tiền người đó nhận được sau 1 tháng là \(S = {20.10^6} \cdot {e^{0,06 \cdot \frac{1}{{12}}}} \simeq 20100250\) đồng.

Lời giải

Ta có \(s(3) = 625\) nghìn con \( \Rightarrow s(0) \cdot {2^3} = 625 \Rightarrow s(0) = \frac{{625}}{8}\) nghìn con.

Để số lượng vi khuẩn là 20 triệu con \( \Rightarrow s(0) \cdot {2^t} = 20000 \Rightarrow {2^t} = 20000:\frac{{625}}{8}\)

\( \Rightarrow {2^t} = {2^8} \Rightarrow t = 8\).

Vậy thời gian để số vi khuẩn đạt 20 triệu con là 8 phút.

Câu 3

a) Hệ số góc của phương trình tiếp tuyến bằng \(1.\)

Đúng
Sai

b) Phương trình tiếp tuyến đi qua điểm \(M\left( { - 1;2} \right)\)

Đúng
Sai

c) Phương trình tiếp tuyến cắt đường thẳng \(y = 2x + 1\) tại điểm có hoành độ bằng \(\frac{4}{3}\)

Đúng
Sai
d) Phương trình tiếp tuyến vuông góc với đường thẳng \(y = x + 1\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \({f^\prime }(1) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}}\)

Đúng
Sai

b) \({f^\prime }(1) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\)

Đúng
Sai

c) \({f^\prime }(1) = \mathop {\lim }\limits_{x \to 1} \left( {x + 4} \right)\)

Đúng
Sai
d) \({f^\prime }(1) = a \Rightarrow a > 5\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\) bằng \(6\)

Đúng
Sai

b) Phương trình tiếp tuyến của \((C)\) tại \(M\) đi qua điểm \(A\left( {0;4} \right)\)

Đúng
Sai

c) Phương trình tiếp tuyến của \((C)\) tại \(M\) cắt đường thẳng \(d:y = 3x\) tại điểm có hoành độ bằng 4

Đúng
Sai
d) Phương trình tiếp tuyến của \((C)\) tại \(M\) vuông góc với đường thẳng \(\Delta :y =  - \frac{1}{6}x\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP