Tìm gia tốc tức thời của chuyển động có phương trình \[S\left( t \right) = 7{t^5} - 3t + 2\], trong đó \[S\] được tính bằng mét (\[m\]) và \[t\] được tính bằng giây (\[s\]).
Câu hỏi trong đề: Đề kiểm tra Bài tập cuối chương 7 (có lời giải) !!
Quảng cáo
Trả lời:
Ta có: Gia tốc tức thời của chuyển động là:
\[a = S''\left( t \right) = {\left( {7{t^5} - 3t + 2} \right)^{\prime \prime }} = {\left( {35{t^4} - 3} \right)^\prime } = 140{t^3}\].Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Hệ số góc của phương trình tiếp tuyến bằng \(3.\)
b) Phương trình tiếp tuyến đi qua điểm \(A\left( {1;3} \right)\)
c) Phương trình tiếp tuyến cắt đường thẳng \(y = 2x + 1\) tại điểm có hoành độ bằng \(0\)
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Với \({x_0} = 0 \Rightarrow {y_0} = 1\)
Ta có \({f^\prime }(0) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x) - f(0)}}{{x - 0}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 3x}}{x} = \mathop {\lim }\limits_{x \to 0} (x + 3) = 3\)
Vậy phương trình tiếp tuyến là: \(y = 3x + 1\)
Lời giải
Ta có: \({y^\prime } = 3{x^2} + 4x\). Do đó \({y^\prime }(1) = 7\).
Phương trình tiếp tuyến tại điểm \(M(1;4)\) là \(y = 7x - 3\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.