Câu hỏi:

13/07/2024 11,098

Chứng minh rằng với mọi số tự nhiên n  2, ta có bất đẳng thức: 3n > 3n + 1

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chứng minh: 3n > 3n + 1 (1)

+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).

+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.

Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1

Thật vậy, ta có:

3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)

= 9k + 3

= 3k + 3 + 6k

= 3.(k + 1) + 6k

> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)

⇒ (1) đúng với n = k + 1.

Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng với n ∈ N*, ta có đẳng thức: 12 + 22 + 32 + .... + n2 = nn+12n+16

Xem đáp án » 13/07/2024 56,734

Câu 2:

Chứng minh rằng với n  N* thì 1 + 2 + 3 + ... + n = nn+12

Xem đáp án » 13/07/2024 47,968

Câu 3:

Chứng minh rằng với n  N*: n3 + 11n chia hết cho 6.

Xem đáp án » 13/07/2024 34,237

Câu 4:

cho tổng Sn = 11.2 + 12.3 + ... + 1nn+1 với nN*

a.Tính S1, S2, S3

b.Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.

Xem đáp án » 13/07/2024 33,097

Câu 5:

Chứng minh rằng với n  N*, ta có đẳng thức: 2 + 5 + 8 + ... + 3n-1 = n3n+12

Xem đáp án » 13/07/2024 27,777

Câu 6:

Chứng minh rằng với n  N*: 4n + 15n  1 chia hết cho 9

Xem đáp án » 13/07/2024 20,822

Câu 7:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là n(n-3)/2

Xem đáp án » 13/07/2024 20,415

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store