Câu hỏi:

13/07/2024 5,196

Chứng minh rằng với mọi số tự nhiên n  2, ta có các bất đẳng thức: 2n+1 > 2n + 3

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2n + 1 > 2n + 3 (2)

+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).

+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.

Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3

Thật vậy, ta có:

2k + 2 = 2.2k + 1

> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.

> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)

⇒ (2) đúng với n = k + 1.

Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Với n = 1 :

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

⇒ (3) đúng với n = 1

+ Giả sử đẳng thức (3) đúng với n = k nghĩa là :

Giải bài tập Đại số 11 | Để học tốt Toán 11

Cần chứng minh (3) đúng khi n = k + 1, tức là:

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Thật vậy:

Giải bài 1 trang 82 sgk Đại số 11 | Để học tốt Toán 11

Lời giải

- Khi n = 1, VT = 1;

Giải bài tập Toán 11 | Giải Toán lớp 11

⇒ VT = VP , do đó đẳng thức đúng với n = 1.

- Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Ta phải chứng minh rằng đẳng thức cũng đúng với n = k + 1, tức là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Thật vậy, từ giả thiết quy nạp ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

Vậy đẳng thức đúng với mọi n ∈ N*

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP