Tiếp tuyến tại một điểm S bất kì của C cắt hai tiệm cận của C tại P và Q. Chứng minh rằng S là trung điểm của PQ.
Câu hỏi trong đề: Giải tích 12 - Phần giải tích !!
Quảng cáo
Trả lời:
Gọi là điểm thuộc (C).
+ Phương trình tiếp tuyến (d) của (C) tại S là:
+ Giao điểm của (d) với tiệm cận đứng x = -1 là:
Tại x = -1 thì
⇒ Giao điểm
+ Giao điểm của (d) với tiệm cận ngang y = 1:
Tại y = 1
⇒ Giao điểm Q(2x0 + 1; 1)
Ta có:
⇒ S là trung điểm PQ (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên các khoảng (-∞; -2) và (0; +∞).
Hàm số nghịch biến trên khoảng (-2; 0).
Hàm số đạt cực tiểu tại x = 0 ; .
Hàm số đạt cực đại tại x = -2 ; .
- Đồ thị:
+ Giao với Oy: (0; 1).
+ Đồ thị (C) đi qua điểm (–3; 1), (1; 5).
Lời giải
TXĐ: D = ℝ.
f’(x) = 3x2 – 6mx + 3(2m – 1)
Hàm số đồng biến trên ℝ
⇔ f’(x) > 0 với ∀x ∈ ℝ.
⇔ ∆’f’(x) = (3m)2 – 3.3(2m – 1) ≤ 0
⇔ 9m2 – 18m + 9 ≤ 0
⇔ 9(m – 1)2 ≤ 0
⇔ (m – 1)2 = 0
⇔ m = 1.
Vậy m = 1 thỏa yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.