Câu hỏi:

29/09/2022 6,675

Lần lượt tác dụng các lực F1 = Focos(12πt) (N); F2 =Focos(14πt) (N); F3 = Focos(16πt) (N); F4= Focos(18πt) (N) vào con lắc lò xo có độ cứng k = 100N/m; khối lượng m = 100g. Lực làm cho con lắc dao động với biên độ nhỏ nhất là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Lần lượt tác dụng các lực F1 = Fo cos (12 pi t) (N) (ảnh 1)

+ Từ biểu thức của các lực => f1 = 6Hz; f2 = 7Hz; f3 = 8Hz; f4 = 9Hz.

+ Tần số dao động riêng của con lắc lò xo: Lần lượt tác dụng các lực F1 = Fo cos (12 pi t) (N) (ảnh 2)

+ Với mỗi lực tác dụng trên ta có biên độ tương ứng là A1, A2, A3, A4. Trong đó Ao = Amax.

+ Từ đồ thị suy ra f4 làm cho con lắc dao động với Amin.

Chú ý: f càng gần fo thì A càng có giá trị gần bằng Amax.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

+ Gọi A là biên độ cực đại của dao động. Khi đó lực đàn hồi cực đại của lò xo trong quá trình dao động Fmax = kA.

+ Để tìm A ta dựa vào định luật bảo toàn năng lượng:

Một con lắc lò xo gồm vật nhỏ khối lượng 0,2kg và lò xo có độ cứng 20N/m (ảnh 1)

+ Thay số, lấy g = 10m/s2 ta được phương trình: 0,1 = 10A2 + 0,02A => A = 0,099m (loại nghiệm âm).

+ Do đó Fmax = kA = 1,98N.

Lời giải

Chọn B

+ Ta luôn có Wđ1 + Wt1 =Wđ2 + Wt2 = Wđ3 + Wt3 = E = hằng số (1).

+ Xét Một chất điểm dao động điều hòa không ma sát. Khi vừa qua khỏi vị trí (ảnh 1)

 

=> Wt2 = 4Wt1 (2).

+ Từ (1) ta có 1,8 + Wt1 = 1,5 + Wt2 (3).

Giải hệ (2) và (3) ta được Wt1 = 0,1J và Wt2 = 0,4J => E = 1,9J.

+ Xét  

 

=> Wt2 = 9Wt1 = 0,9J. => Wđ3 =  – Wt3 = 1,9 – 0,9 = 1,0J.