Câu hỏi:
13/07/2024 819Dựa vào kết quả của bài 65, hãy chứng minh rằng: Các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Kẻ đường trung trực của AC cắt BC tại K
Nối AK.
Ta có: KA = KC (tính chất đường trung trực)
Suy ra: Δ KAC cân tại K
Suy ra: ∠(KAC) = ∠C (1)
Lại có: ∠C + ∠B = 90o (t/chất tam giác vuông) (2)
Mà: ∠(KAC) + ∠(KAB) = ∠(BAC) = 90o (3)
Từ (1); (2) và (3) suy ra: ∠B = ∠(KAB)
Do đó; Δ KAB cân tại K ⇒ KA = KB
Suy ra: K thuộc đường trung trực của AB
Do đó K là giao điểm ba đường trung trực của Δ ABC
Suy ra: KB = KC = KA ⇒ K là trung điểm của BC
Vậy các đường trung trực của tam giác vuông đi qua trung điểm cạnh huyền
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, đường trung tuyến AM. Đường trung trực của AC cắt đường thẳng AM ở D. Chứng minh rằng DA = DB.
Câu 2:
Cho tam giác ABC có ∠A = 100o. Các đường trung trực của AB và AC lần lượt cắt BC ở E và F. Tính ∠(EAF) .
Câu 3:
Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là tia phân giác của góc MAN.
Câu 4:
Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và của AC cắt nhau ở O và cắt BC theo thứ tự ở D và E. Các tam giác ABD, ACE là tam giác gì?
Câu 6:
Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và của AC cắt nhau ở O và cắt BC theo thứ tự ở D và E. Đường tròn tâm O bán kính OA đi qua những điểm nào trong hình vẽ?
Câu 7:
Cho tam giác cân (không đều) ABC có AB = AC. Hai đường trung trực của hai cạnh AB, AC cắt nhau tại O. Khi đó khẳng định nào sau đây là đúng?
(A) OA > OB;
(B) ∠(AOB) > ∠(AOC) ;
(C) AO ⊥ BC;
(D) O cách đều ba cạnh của tam giác ABC.
về câu hỏi!