Câu hỏi:

13/07/2024 4,487 Lưu

Một hình chóp có tất cả các cạnh bên bằng nhau. Chứng minh rằng hình chóp đó nội tiếp được trong một mặt cầu (các đỉnh của hình chóp nằm trên mặt cầu).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.A1A2A3...An

 có các cạnh bên bằng nhau.

Gỉa sử I là hình chiếu vuông góc của S trên mặt đáy.

 

 

được trong một đường tròn tâm I bán kính IA, trục SI.

Trong mp(SAI), đường trung trực

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Từ A vẽ AH ⊥ (BCD)

Xét ba tam giác ABH, ACH và ADH có:

AB= AC = AD ( vì ABCD là tứ diện đều).

AH chung

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

=> ∆ ABH = ∆ ACH =∆ ADH ( ch- cgv)

Suy ra,HB = HC = HD . Do đó, H là tâm đường tròn ngoại tiếp tam giác BCD

Do tam giác BCD là tam giác đều nên H đồng thời là trọng tâm tam giác BCD

Gọi M là trung điểm CD. Ta có;

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

+ xét tam giác AHB vuông tại H có:

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP