Câu hỏi:

13/07/2024 17,466

Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).

Chứng minh H là tâm đường tròn ngoại tiếp tam giác BCD. Tính độ dài đoạn AH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Từ A vẽ AH ⊥ (BCD)

Xét ba tam giác ABH, ACH và ADH có:

AB= AC = AD ( vì ABCD là tứ diện đều).

AH chung

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

=> ∆ ABH = ∆ ACH =∆ ADH ( ch- cgv)

Suy ra,HB = HC = HD . Do đó, H là tâm đường tròn ngoại tiếp tam giác BCD

Do tam giác BCD là tam giác đều nên H đồng thời là trọng tâm tam giác BCD

Gọi M là trung điểm CD. Ta có;

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

+ xét tam giác AHB vuông tại H có:

Giải bài 5 trang 50 sgk Hình học 12 | Để học tốt Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.A1A2A3...An

 có các cạnh bên bằng nhau.

Gỉa sử I là hình chiếu vuông góc của S trên mặt đáy.

 

 

được trong một đường tròn tâm I bán kính IA, trục SI.

Trong mp(SAI), đường trung trực

 

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP