Câu hỏi:

11/07/2024 2,767

Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại O. Chứng minh rằng OM.OC = ON.OB

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì M, N lần lượt là trung điểm của cạnh AC và AB nên đường thẳng MN song song với BC.

Do đó tứ giác BCMN là hình thang và có hai đường chéo BM và CN cắt nhau tại O.

Theo kết quả chứng minh ở bài tập số 9, ta có: OM.OC = ON.OB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong ΔADB, ta có: MN // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hệ quả định lí ta-lét) (1)

Trong ΔACB, ta có: PQ // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quá định lí Ta-lét) (2)

Lại có: NQ // AB (gt)

       AB // CD (gt)

Suy ra: NQ // CD

Trong ΔBDC, ta có: NQ // CD (chứng minh trên)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(Định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hay MN = PQ.

Lời giải

Ta có: AB // CD (gt), áp dụng hệ quả của định lý Ta – lét ta có:

Suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(hệ quả định lí ta-lét)

Vậy OA.OD = OB.OC

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP