Cho một khối cầu tâm O bán kính bằng 6cm. Mặt phẳng (P) cách O một khoảng x (cm) cắt khối cầu theo một hình tròn (C). Một khối nón có đỉnh thuộc mặt cầu, đáy là hình tròn (C). Biết khối nón có thể tích lớn nhất, giá trị của x bằng
Quảng cáo
Trả lời:
Chọn đáp án A
Gọi I là tâm của hình tròn (C) và S là đỉnh của hình nón. Gọi bán kính của hình tròn (C) là r thì
Trường hợp 1: O nằm giữa S và I.
Chiều cao của hình chóp là SI = SO + OI = x + 6 (cm).
Thể tích khối chóp là
Xét hàm số với
Ta có
Do nên x = - 6.
Lập bảng biến thiên của hàm số ta thấy f(x) ta thấy
Suy ra
Dấu “=” xảy ra x = 2.
Trường hợp 2: I nằm giữa S và O
Chiều cao của hình chóp là SI = SO – OI = 6 – x (cm)
Thể tích của khối chóp là (cm3).
Xét hàm số với
Ta có nên hàm số g(x) nghịch biến trên .
Suy ra
Khi đó .
Dấu “=” xảy ra khi x = 0.
So sánh hai trường hợp 1 và 2, suy ra thể tích lớn nhất của khối chóp đã cho là khi .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án A
Gọi Ai là biến cố “cầu thủ thứ I ghi bàn” với .
Các biến cố Ai độc lập với nhau và P(A1) = x; P(A2) = y; P(A3) = 0,6.
* Gọi A là biến cố “Có ít nhất một trong ba cầu thủ ghi bàn” P(A) = 0,976.
Ta có là biến cố “không có cầu thủ nào ghi bàn”.
Ta có phương trình
* Gọi B là biến cố “Cả ba cầu thủ đều ghi bàn” P(B) = 0,336.
Mặt khác P(B) = P(A1).P(A2).P(A3) = 0,6xy.
Ta có phương trình
* Từ (1) và (2) ta có hệ phương trình
Suy ra x, y là nghiệm của phương trình
Do x > y nên và .
* Gọi C là biến cố “Có đúng hai cầu thủ ghi bàn”
Khi đó
Lời giải
Chọn đáp án C
thì đồ thị hàm số có hai đường tiệm cận:
Đường tiệm cận đứng là và đường tiệm cận ngang là
Từ giả thiết bài toán ta có:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.