Cho hàm số có đồ thị là (C). Gọi M1 là điểm trên (C) có hoành độ . Tiếp tuyến của (C) tại M1 cắt (C) tại điểm M2 khác M1, tiếp tuyến của (C ) tại M2 cắt (C) tại điểm M3 khác M2,…, tiếp tuyến của (C) tại điểm Mn-1 cắt (C) tại điểm Mn khác Mn-1 . Gọi . Tìm n sao cho .
Quảng cáo
Trả lời:
Chọn đáp án B
Ta có . Giả sử thì tiếp tuyến của (C) tại điểm M có hệ số góc là
Phương trình .
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng là:
Suy ra hoành độ các điểm Mn lập thành một cấp số nhân (xn) có số hạng đầu và công bội q = -2.
Ta có
.
Để
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án A
Gọi Ai là biến cố “cầu thủ thứ I ghi bàn” với .
Các biến cố Ai độc lập với nhau và P(A1) = x; P(A2) = y; P(A3) = 0,6.
* Gọi A là biến cố “Có ít nhất một trong ba cầu thủ ghi bàn” P(A) = 0,976.
Ta có là biến cố “không có cầu thủ nào ghi bàn”.
Ta có phương trình
* Gọi B là biến cố “Cả ba cầu thủ đều ghi bàn” P(B) = 0,336.
Mặt khác P(B) = P(A1).P(A2).P(A3) = 0,6xy.
Ta có phương trình
* Từ (1) và (2) ta có hệ phương trình
Suy ra x, y là nghiệm của phương trình
Do x > y nên và .
* Gọi C là biến cố “Có đúng hai cầu thủ ghi bàn”
Khi đó
Lời giải
Chọn đáp án C
thì đồ thị hàm số có hai đường tiệm cận:
Đường tiệm cận đứng là và đường tiệm cận ngang là
Từ giả thiết bài toán ta có:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.