Câu hỏi:
27/04/2020 7,672Hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O và AC = 2.AB. Vẽ trung tuyến BE của tam giác ABO. Chứng minh rằng ABE = ACB.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Vì ABCD là hình bình hành và E là trung điểm của AO (vì BE là trung tuyến của tam giác ABO) nên ta có: AO = CO = 1/2 AC; AE = 1/2 AO.
Mặt khác, theo giả thiết AC = 2AB nên dễ thấy AB = AO và do đó AE = 1/2AB
Xét hai tam giác AEB và ABC, ta có:
Góc A chung
Vậy AEB đồng dạng ABC (c.g.c)
Suy ra: hai góc tương ứng bằng nhau ABE = ACB (đpcm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = 12cm, AC = 15cm, BC = 18cm. Trên cạnh AB đặt đoạn thẳng AM = 10cm, trên cạnh AC đặt đoạn AN = 8cm. Tính độ dài đoạn thẳng MN
Câu 2:
Hình thang ABCD (AB // CD) có AB= 4cm, CD = 16cm và BD = 8cm. Chứng minh: (BAD) = (DBC) và BC =2AD.
Câu 3:
Cho tam giác ABC có AB = 10cm, AC=20cm. Trên cạnh AC, đặt đoạn AD = 5cm. Chứng minh: (ABD) = (ACB)
Câu 4:
Cho tam giác ABC có A = ; AB = 6cm, AC = 9cm. Dựng tam giác đồng dạng với tam giác ABC theo tỉ số đồng dạng k = 1/3
Câu 5:
Hình bs.4 cho biết Oz là phân giác của góc xOy, OA = 9cm, OB = 12cm, OC = 16cm, AB = 6cm.
Độ dài của đoạn thẳng BC là m bằng:
A. 7,5cm
B. 8cm
C. 8,5cm
D. 9cm
Câu 6:
Hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O và AC = 2.AB. Gọi M là trung điểm của cạnh BC, chứng minh rằng EM vuông góc với đường chéo BD.
về câu hỏi!