Câu hỏi:

27/04/2020 9,269

Hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O và AC = 2.AB. Vẽ trung tuyến BE của tam giác ABO. Chứng minh rằng ABE = ACB.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ABCD là hình bình hành và E là trung điểm của AO (vì BE là trung tuyến của tam giác ABO) nên ta có: AO = CO = 1/2 AC; AE = 1/2 AO.

Mặt khác, theo giả thiết AC = 2AB nên dễ thấy AB = AO và do đó AE = 1/2AB

Xét hai tam giác AEB và ABC, ta có:

Góc A chung

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy AEB đồng dạng ABC (c.g.c)

Suy ra: hai góc tương ứng bằng nhau ABE = ACB (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ΔABC và ΔANM, ta có

      + Góc A chung

      + Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: ANM đồng dạng ABC(c.g.c) ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy MN = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 = (8.18)/12 = 12 cm

Lời giải

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ABD và BDC, ta có:

(ABD) = (BDC) (so le trong)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (chứng minh trên)

Vây ABD đồng dạng BDC (c.g.c) ⇒ (BAD) = (DBC)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tỉ số đồng dạng k = 1/2

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 , suy ra: BC = 2AD

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP