Câu hỏi:
27/04/2020 1,426Hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O và AC = 2.AB. Gọi M là trung điểm của cạnh BC, chứng minh rằng EM vuông góc với đường chéo BD.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Theo chứng minh ở câu a. AEB đồng dạng ABC theo tỉ số k = 1/2 nên dễ thấy BE = 1/2 BC hay BE = BM
Suy ra: ΔBEM cân tại B.
Xét tam giác EBC có:
Suy ra: OB là đường phân giác góc EBC
BO là đường phân giác góc ở đỉnh của tam giác cân BEM nên BO vuông góc với cạnh đáy EM (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = 12cm, AC = 15cm, BC = 18cm. Trên cạnh AB đặt đoạn thẳng AM = 10cm, trên cạnh AC đặt đoạn AN = 8cm. Tính độ dài đoạn thẳng MN
Câu 2:
Hình thang ABCD (AB // CD) có AB= 4cm, CD = 16cm và BD = 8cm. Chứng minh: (BAD) = (DBC) và BC =2AD.
Câu 3:
Cho tam giác ABC có AB = 10cm, AC=20cm. Trên cạnh AC, đặt đoạn AD = 5cm. Chứng minh: (ABD) = (ACB)
Câu 4:
Hình bình hành ABCD có hai đường chéo AC và BD cắt nhau tại O và AC = 2.AB. Vẽ trung tuyến BE của tam giác ABO. Chứng minh rằng ABE = ACB.
Câu 5:
Cho tam giác ABC có A = ; AB = 6cm, AC = 9cm. Dựng tam giác đồng dạng với tam giác ABC theo tỉ số đồng dạng k = 1/3
Câu 6:
Hình bs.4 cho biết Oz là phân giác của góc xOy, OA = 9cm, OB = 12cm, OC = 16cm, AB = 6cm.
Độ dài của đoạn thẳng BC là m bằng:
A. 7,5cm
B. 8cm
C. 8,5cm
D. 9cm
về câu hỏi!