Câu hỏi:

27/04/2020 449

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α:x++z-4=0, mặt cầu S:x2+y2+z2-8x-6y-6z+18=0  và điểm M1;1;2α. Đường thẳng d đi qua M và nằm trong mặt phẳng α cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho dây cung AB có độ dài nhỏ nhất. Đường thẳng d có một vectơ chỉ phương là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án C

Mặt cầu (S) có tâm I(4;3;3) và bán kính R = 4. Gọi I’ là hình chiếu của I trên mặt phẳng α.

Đường thẳng II' đi qua I(4;3;3) và nhận n=1;1;1 làm vectơ chỉ phương nên có phương trình là:

 

Tọa độ điểm I’ thỏa mãn hệ

 

t=-2. Suy ra I’(2;1;1).

Gọi hình tròn (C) bán kính r là thiết diện của khối cầu (S) khi cắt bởi mặt phẳng α. Khi đó I’ là tâm của đường tròn (C).

Ta có IM=14<4=R và Mα nên điểm M thuộc miền trong của đường tròn (C) (M nằm trong hình trong hình tròn).

Do đường thẳng dα, d đi qua M và d cắt mặt cầu tại hai điểm A, B nên d cắt đường tròn (C) tại hai điểm A, B.

Phương tích của điểm M với đường tròn (C): MA.MB=r2-I'M2.

Do r không đổi nên r2-I'M2 không đổi MA.MB không đổi.

Lại có

Dấu “=” xảy ra khi MA = MB hay ABMI'.

Mà ABMI' nên đường thẳng AB có một vectơ chỉ phương là  u=II';MI'=2;-4;2(cùng phương với vectơ u2)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án A

Gọi Ai là biến cố “cầu thủ thứ I ghi bàn” với i1;2;3.

Các biến cố Ai độc lập với nhau và P(A1) = x; P(A2) = y; P(A3) = 0,6.

* Gọi A là biến cố “Có ít nhất một trong ba cầu thủ ghi bàn” P(A) = 0,976.

Ta có là biến cố “không có cầu thủ nào ghi bàn”.

Ta có phương trình

 

* Gọi B là biến cố “Cả ba cầu thủ đều ghi bàn” P(B) = 0,336.

Mặt khác P(B) = P(A1).P(A2).P(A3) = 0,6xy.

Ta có phương trình

 

* Từ (1) và (2) ta có hệ phương trình

 

Suy ra x, y là nghiệm của phương trình

 

Do x > y nên x=45=0,8y=710=0,7.

* Gọi C là biến cố “Có đúng hai cầu thủ ghi bàn”

Khi đó

PC=0,452

Lời giải

Chọn đáp án C

thì đồ thị hàm số y=ax+1bx-2 có hai đường tiệm cận:

Đường tiệm cận đứng là x=2b và đường tiệm cận ngang là y=ab

Từ giả thiết bài toán ta có:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay