Câu hỏi:

13/07/2024 1,979

Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9cm.

Gọi D và E là hình chiếu của H trên AB và AC.

Tính độ dài DE

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hai tam giác vuông ABH và CAH có:

ABH = CAH (cùng phụ với góc BAH)

Do đó ABH đồng dạng CAH (g.g).

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AH2 = BH. CH = 4.9 = 36 ⇒ AH = 6(cm)

Mặt khác, HD ⊥ AB và HE ⊥ AC nên ADHE là hình chữ nhật.

Suy ra: DE = AH = 6 (cm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, AC =4cm, BC = 6cm. Kẻ tia Cx vuông góc với BC (tia Cx và điểm A khác phía so với đường thẳng BC). Lấy trên Cx điểm D sao cho BD =9cm. Chứng minh rằng BD // AC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 10,100

Câu 2:

Cho hình thang vuông ABCD (A = D = 900) AB = 6cm, CD = 12cm, AD = 17cm. Trên cạnh AD, đặt đoạn AE = 8cm. Chứng minh (BEC) = 900

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 8,761

Câu 3:

Cho tam giác ABC vuông tại A, AC = 9cm, BC = 24cm. Đường trung trực của BC cắt đường thẳng AC tại D, cắt BC tại M. Tính độ dài của đoạn thẳng CD.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 6,282

Câu 4:

Đường cao của một tam giác vuông xuất phát từ đỉnh góc vuông chia cạnh huyền thành hai đoạn thẳng có dộ dài là 9cm và 16cm; Tính độ dài các cạnh của tam giác vuông.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 4,521

Câu 5:

Tam giác vuông ABC (A = 900) có đường cao AH và trung tuyến AM. Tính diện tích tam giác AMH,biết rằng BH = 4cm, CH = 9cm

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 3,710

Câu 6:

Cho tam giác ABC (A = 900) có đường cao AH. Chứng minh rằng AH2=BH.CH

Xem đáp án » 13/07/2024 2,283

Câu 7:

Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9cm.

Gọi D và E là hình chiếu của H trên AB và AC.

Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N . Chứng minh M là trung điểm của BH , N là trung điểm của CH.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xem đáp án » 13/07/2024 2,192

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn