Câu hỏi:
27/04/2020 1,597Cho hình chóp cụt đều ABCD.A'B'C'D' có cạnh đáy là a và 2a chiều cao của mặt bên là a. Tính diện tích xung quanh hình chóp cụt
Câu hỏi trong đề: Giải Sách Bài Tập Toán 8 Tập 2 !!
Quảng cáo
Trả lời:
Một mặt bên của hình chóp cụt là một hình thang có hai đáy là a và 2a; đường cao bằng a.
Diện tích mặt bên là:
S = (a+ 2a): 2.a =3/2 (đvtt)
Diện tích xung quanh hình nón cụt:
= 4.3/2 = 6 (đvtt)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: V = 1/3 .S.h mà V = 126 () ,h = 6cm nên :
126 = 1/3 .S.6 ⇒ S = 126 :2 = 63 ()
Vậy chọn đáp án C
Lời giải
Xét hình chóp cụt đều ABCD.A'B'C'D' như hình bs.19.
Gọi M, M' thứ tự là trung điểm của BC, B'C'. Khi đó MM' là đường cao của hình thang cân BCC'B'.
Do đó diện tích xung quanh của hình chóp cụt đều là:
= 4.(a+b)/2.MM′=(2a+2b).MM′
Từ giả thiết ta có:
(2a+2b).MM′=
Dễ thấy OM // O'M' nên OM và O'M' xác định mặt phẳng (OMM'O'). Trong mặt phẳng (OMM'O'), kẻ MH ⊥ O'M'. Khi đó: HM' = O'M' – O'H = (b−a)/2
Trong tam giác vuông MHM' ta có: (2)
Từ (1) và (2) suy ra :
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.