Câu hỏi:

13/07/2024 4,295 Lưu

Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ABCD là hình bình hành:

⇒ AB // CD hay BM // CD

Xét tứ giác BMCD ta có:

BM // CD

BM = CD( = AB ) (gt)

Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC // BD và MC = BD (1)

+) Ta có AD // BC (gt) haỵ DN // BC

Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN // BD và CN = BD (2)

Từ (1) và (2) theo tiên đề Ơ- clit suy ra: M, C, N thẳng hàng và MC = CN( = BD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét OAE và OCF, ta có:

OA = OC (tính chất hình bình hành)

(AOE)= (COF)(đối đỉnh)

(OAE)= (OCF)(so le trong)

Do đó: OAE = OCF (g.c.g)

⇒ OE = OF (l)

* Xét OAG và OCH, ta có:

OA = OC (tính chất hình bình hành)

(AOG) = (COH)(dối đỉnh)

(OAG) = (OCH)(so le trong).

Do đó: OAG = OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK, ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB // CH, KC // BH

Ta có: CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên (KBA) = 900

Ta có: BH ⊥ AC (gt)

Suy ra: CK ⊥ AC nên (KCA) = 900

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP