Câu hỏi:

13/07/2024 4,050 Lưu

Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm c

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác ABCD là hình bình hành:

⇒ AB // CD hay BM // CD

Xét tứ giác BMCD ta có:

BM // CD

BM = CD( = AB ) (gt)

Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC // BD và MC = BD (1)

+) Ta có AD // BC (gt) haỵ DN // BC

Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN // BD và CN = BD (2)

Từ (1) và (2) theo tiên đề Ơ- clit suy ra: M, C, N thẳng hàng và MC = CN( = BD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét OAE và OCF, ta có:

OA = OC (tính chất hình bình hành)

(AOE)= (COF)(đối đỉnh)

(OAE)= (OCF)(so le trong)

Do đó: OAE = OCF (g.c.g)

⇒ OE = OF (l)

* Xét OAG và OCH, ta có:

OA = OC (tính chất hình bình hành)

(AOG) = (COH)(dối đỉnh)

(OAG) = (OCH)(so le trong).

Do đó: OAG = OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tính chất đường trung trực)

Nên ADE cân tại A

Suy ra: AB là đường phân giác của (DAE) ⇒ A1A2

* Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF (tính chất đường trung trực)

Nên ADF cân tại A

Suy ra: AC là phân giác của (DAF)

⇒ A3A4

(EAF) = EAD) + (DAF) = A1A2A3A4= 2(A1A3) = 2.900=1800

⇒ E, A, F thẳng hàng có AE = AF = AD

 

Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP