Câu hỏi:

13/07/2024 5,164 Lưu

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét OED và OFB, ta có:

(EOD)= (FOB)(đối đỉnh)

OD = OB (tính chất hình bình hành)

(ODE)= (OBF)(so le trong)

Do đó: OED = OFB (g.c.g)

⇒ OE = OF

Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét OAE và OCF, ta có:

OA = OC (tính chất hình bình hành)

(AOE)= (COF)(đối đỉnh)

(OAE)= (OCF)(so le trong)

Do đó: OAE = OCF (g.c.g)

⇒ OE = OF (l)

* Xét OAG và OCH, ta có:

OA = OC (tính chất hình bình hành)

(AOG) = (COH)(dối đỉnh)

(OAG) = (OCH)(so le trong).

Do đó: OAG = OCH (g.c.g)

⇒ OG = OH (2)

Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK, ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB // CH, KC // BH

Ta có: CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên (KBA) = 900

Ta có: BH ⊥ AC (gt)

Suy ra: CK ⊥ AC nên (KCA) = 900

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP