Cho tam giác nhọn ABC có A = , trực tâm H. Gọi M là điểm đối xứng với H qua BC. Chứng minh BHC = BMC
Câu hỏi trong đề: Giải Sách Bài Tập Toán 8 Tập 1 !!
Quảng cáo
Trả lời:
Vì M đối xứng với H qua trục BC
⇒ BC là đường trung trực của HM
⇒ BH = BM (t/chất đường trung trực)
CH = CM (t/chất đường trung trực)
Xét tam giác BHC và tam giác BMC có:
BC chung
BH= BM ( chứng minh trên)
CH = CM (chứng minh trên)
Suy ra: BHC = BMC (c.c.c)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi giao điểm BH với AC là D, giao điểm của CH và AB là E, H là trực tâm của ΔABC
⇒ BD ⊥ AC, CE ⊥ AB
Xét tứ giác ADHE, ta có:
(DHE) = – (A + D + E ) =
(BHC) = (DHE)(đối đỉnh)
BHC = BMC (chứng minh trên)
⇒ (BMC) = (BHC)
Suy ra: (BMC) = (DHE) =
Lời giải
Vì D đối xứng với M qua trục AB
⇒ AB là đường trung trực của MD.
⇒ AD = AM (t/chất đường trung trực) (1)
Vì E đối xứng với M qua trục AC
⇒ AC là đường trung trực của ME
⇒ AM = AE (t/chất đường trung trực) (2)
Từ (1) và (2) suy ra: AD = AE
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.