Câu hỏi:

13/07/2024 4,137

Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI = AK . Chứng minh rằng điểm I đối xứng với điểm K qua AH.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: ABC cân tại A; AH ⊥ BC (gt)

Suy ra: AH là tia phân giác của góc A

Lại có: AI = AK (gt)

Suy ra: AIK cân tại A

Do AH là tia phân giác của góc A

Nên AH là đường trung trực của IK

Vậy I đối xứng với K qua AH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có A = 600, trực tâm H. Gọi M là điểm đối xứng với H qua BC. Tính góc (BMC)

Xem đáp án » 13/07/2024 9,760

Câu 2:

Cho tam giác ABC có A = 700, điểm M thuộc cạnh BC. Vẽ điểm D đối xứng với M qua AB, vẽ điểm E đối xứng với M qua AC. Chứng minh rằng AD = AE

Xem đáp án » 13/07/2024 6,196

Câu 3:

Cho hình thang vuông ABCD (A = D = 900). Gọi H là điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh rằng (AIB) = (DIC)

Xem đáp án » 13/07/2024 6,032

Câu 4:

Cho hai điểm A, B thuộc cùng một nửa mặt phẳng bờ là đường thẳng xy (AB không vuông góc với xy). Gọi A’ đối xứng với A qua xy, C là giao điểm của A’B và xy. Gọi M là điểm bất kì khác C thuộc đường thẳng xy. Chứng minh rằng: AC + CB < AM + MB

Xem đáp án » 13/07/2024 5,435

Câu 5:

Cho tam giác ABC. Điểm M nằm trên đường phân giác của góc ngoài đỉnh C (M khác C). Chứng minh rằng AC+ CB < AM+ MB

Xem đáp án » 13/07/2024 4,934

Câu 6:

Cho góc nhọn xOy, điểm A nằm trong góc đó.

Dựng điểm B thuộc tia Ox, điểm C thuộc tia Oy sao cho tam giác ABC có chu vi nhỏ nhất.

Xem đáp án » 13/07/2024 4,443

Bình luận


Bình luận