Câu hỏi:
10/05/2020 1,970Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
Khái niệm: Hình đa diện gồm một số hữu hạn đa giác phẳng thỏa mãn hai điều kiện:
a) Hai đa giác bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có một cạnh chung.
b) Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác.
Hình đa diện chia không gian thành hai phần (phần bên trong và phần bên ngoài). Hình đa diện cùng với phần bên trong của nó gọi là khối đa diện.
Cách giải:
Theo khái niệm hình đa diện ta chỉ thấy hình 4 không là hình đa diện.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án B
Phương pháp:
+) Chứng minh hai mặt phẳng (SAD) và (SBC) là hai mặt phẳng có chứa hai đường thẳng song song.
+) Tìm giao tuyến d của hai mặt phẳng có chứa hai đường thẳng song song.
Cách giải:
Tứ giác ABCD là hình bình hành
Điểm S thuộc cả 2 mặt phẳng (SAD) và (SBC)
Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng d đi qua S và song song với AD, BC.
Lời giải
Đáp án D
Phương pháp:
- Gọi H là trực tâm tam giác, chứng minh bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.
- Tính độ dài SH bằng cách sử dụng hệ thức lượng giữa cạnh và đường cao trong tam giác vuông.
Cách giải: Gọi H là trực tâm của tam giác ABC.
Ta sẽ chứng minh SH là đường cao của hình chóp.
Gọi E, D lần lượt là hình chiếu của B,A lên AC,BC.
Chú ý khi giải: Từ nay về sau, các em có thể ghi nhớ hệ thức liên hệ giữa đường cao và cạnh trong hình chóp S.ABC mà có SA, SB, SC đôi một vuông góc, đó là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.