Câu hỏi:

18/02/2021 93,511

Cho hình chóp S.ABC có đáy là tam giác vuông tại A; AB = a; AC = 2a. Đỉnh S cách đều A,B,C; mặt bên (SAB) hợp với mặt đáy (ABC) góc 600. Tính thể tích khối chóp S.ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi H là trung điểm BC, vì tam giác ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC. Do S cách đều A, B, C => SH (ABC). Gọi M là trung điểm của AB thì HMAB nên SMAB. Vậy góc giữa (SAB) và (ABC) là góc SMH^=60°

Ta có

HM=12AC=a;SH=HM.tan60°=a3

Vậy VS.ABC=13SH.12AB.AC=a333

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta  AB2+AC2=36+64=100=BC2 . Suy ra tam giác ABC vuông tại A.

Suy ra SABC=12.AB.AC=12.6.8=24

VậyV=13.SA.SABC=13.4.24=32 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP