Câu hỏi:

12/07/2024 11,110

Cho đường tròn (C) và điểm A nằm ngoài mặt phẳng chứa (C). Có tất cả bao nhiêu mặt cầu chứa đường tròn (C) và đi qua A?

A. 0              B. 1

C. 2              D. Vô số

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.11) Lấy điểm M0 cố định trên đường tròn (C).

Gọi (α) là mặt phẳng trung trực của AM0 và đường thẳng Δ là trục của (C)

Ta có: I = (α) là tâm mặt cầu thỏa mãn yêu cầu đề bài.

Nhận xét: Tâm I là duy nhất. Thật vậy, giả sử M nằm trên đường tròn (C) khác với M0

Gọi (α') là mặt phẳng trung trực của AM và I' = (α')  

Khi đó, mặt cầu tâm I' thỏa mãn yêu cầu đề bài.

Ta có: I'A = I'M = I'M0 cho ta I' thuộc mặt phẳng trung trực (α) của AM0

Suy ra: I' = (α)  

Vậy I' ≡ I

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(h.12) Gọi (α) là mặt phẳng chứa đường thẳng MO

Ta có: (α) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn (C) có tâm O, bán kính R.

Trong mặt phẳng (α), từ điểm M nằm ngoài (C) ta luôn kẻ được hai tiếp tuyến MT1, MT2 với đường tròn (C). Đây cũng là hai tiếp tuyến với mặt cầu S(O;R).

Nhận xét: Do có vô số mặt phẳng (α) chứa đường thẳng MO. Những mặt phẳng này cắt mặt cầu S(O;R) theo các giao tuyến là đường tròn khác nhau nên cũng có vô số tiếp tuyến với mặt cầu được kẻ từ điểm M nằm ngoài mặt cầu.