Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
1486 lượt thi câu hỏi
1731 lượt thi
Thi ngay
1470 lượt thi
1418 lượt thi
Câu 1:
Cho lăng trụ ABC.A'B'C'. Tính tỉ số: VACA'B'VABC.A'B'C'
Cho lăng trụ ABC.A'B'C'. Tính VACA'B' biết rằng tam giác ABC là tam giác đều cạnh bằng a, AA' = b và AA' tạo với (ABC) một góc bằng 60°
Câu 2:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60°. Thể tích hình chóp S.CDNM
Câu 3:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60°. Tính khoảng cách giữa DM và SC.
Câu 4:
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Chứng minh rằng các đường vuông góc chung của các cặp cạnh đối diện đồng quy và đôi một vuông góc với nhau
Câu 5:
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Tính VABCD theo a, b, c
Câu 6:
Cho tứ diện ABCD có AD = BC = a, BD = CA = b, CD = AB = c. Chứng minh rằng tâm các mặt cầu nội tiếp và ngoại tiếp của tứ diện ABCD trùng nhau. Tính bán kính của các mặt cầu đó theo a, b, c.
Câu 7:
Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H). Tính tỉ số thể tích của (H') và (H)
Câu 8:
Cho hình nón tròn xoay (H) đỉnh S, đáy là hình tròn bán kính R, chiều cao bằng h. Gọi (H') là hình trụ tròn xoay có đáy là hình tròn bán kính r (0 < r < R) nội tiếp (H). Xác định r để (H') có thể tích lớn nhất.
Câu 9:
Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: x-3=y-1=z2
Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).
Câu 10:
Tìm tập hợp những điểm cách đều ba điểm A, B, C.
Câu 11:
Cho hai đường thẳng d, d' và M(2; -1; 0)
d: x=3+ty=1-tz=2t , d': x=1+t'y=2t'z=-1+t'
Chứng minh rằng d và d' chéo nhau.
Câu 12:
Tìm tọa độ điểm A trên d và điểm B trên d' để M, A, B thẳng hàng.
Câu 13:
Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - z + 5 = 0 và hai điểm A(-2; -1; 1), B(6; 6; 5). Trong các đường thẳng qua A và song song với (P) hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất.
Câu 14:
Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Chứng minh rằng (P) cắt (S) theo một đường tròn.
Câu 15:
Trong không gian Oxyz, cho mặt cầu (S): x2+y2+z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Tìm tọa độ tâm và bán kính của đường tròn đó.
Câu 16:
Hãy tìm tọa độ các đỉnh còn lại
Câu 17:
Chứng minh A'C ⊥ (BC'D)
Câu 18:
Tìm tọa độ của chân đường vuông góc chung của B'D' và BC'.
Câu 19:
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Viết phương trình của mặt phẳng (P) qua A và vuông góc với SB
Câu 20:
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tìm tọa độ của các điểm B' là gia của (P) với đường thẳng SB, C' là giao của (P) với đường thẳng SC
Câu 21:
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tính thể tích tứ diện SAB'C'
Câu 22:
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Tìm điểm đối xứng với B qua mặt phẳng (P)
Câu 23:
Trong không gian Oxyz, cho S(0; 0; 2), A(0; 0; 0), B(1; 2; 0), C(0; 2; 0). Chứng minh các điểm A, B, C, B', C' cùng thuộc một mặt cầu. Viết phương trình của mặt cầu đó và phương trình của mặt phẳng tiếp xúc với mặt cầu đó tại C'.
297 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com