Giải sbt Giải tích 12 Bài 2: Cực trị của hàm số

39 người thi tuần này 4.6 2.4 K lượt thi 17 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) y = −2x2 + 7x − 5. TXĐ: R

y′ = −4x + 7, y′ = 0 ⇔ x = 7/4

y′′ = −4 ⇒ y′′(7/4) = −4 < 0

Vậy x = 7/4 là điểm cực đại của hàm số và yCD = 9/8

b) y = x3 - 3x2 - 24x + 7. TXĐ: R

y'3x2 - 6x -24 = 3(x2 - 2x - 8)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(−2) = −18 < 0, y′′(4) = 18 > 0 nên hàm số đạt cực đại tại x = -2; đạt cực tiểu tại x = 4 và yCĐ = y(-2) = 35; yCT = y(4) = -73.

e) TXĐ: R

y′ = 2(x + 2).(x-3)3 + 3(x+2)2.(x-3)2 = 5x(x + 2).(x-3)2

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra yCĐ = y(-2) = 0; yCT = y(0) = -108.

Lời giải

a) TXĐ : R

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = 2, cực tiểu tại x = -4 và yCĐ = y(2) = 1/4; yCT = y(−4) = −1/8

b) Hàm số xác định và có đạo hàm với mọi x ≠ 1.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = 1 − 2 và đạt cực tiểu tại x = 1 + 2, ta có:

yCD = y(1 − 2)  = −22;

yCT = y(1 + 2) = 22.

c) TXĐ: R\{-1}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên các khoảng và do đó không có cực trị.

d) Vì x2 – 2x + 5 luôn luôn dương nên hàm số xác định trên (-; +)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −1/3, đạt cực tiểu tại x = 4 và yCĐ = y(−1/3) = 13/4; yCT = y(4) = 0

Lời giải

a) TXĐ: R

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = 0 ⇔ x = 64

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy ta có yCĐ = y(0) = 0 và yCT = y(64) = -32.

b) Hàm số xác định trên khoảng (-; +).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy yCĐ = y(−2) = Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Hàm số xác định trên khoảng (−10;10).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y’ > 0 với mọi (−10;10) nên hàm số đồng biến trên khoảng đó và do đó không có cực trị.

d) TXĐ: D = (−; −6) ∪ (6; +)

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta thấy hàm số đạt cực đại tại x = -3, đạt cực tiểu tại x = -3 và yCT = y(3) = 93; yCĐ = y(−3) = −93

 

Lời giải

a) y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và yCD = y(π/4) = 1; yCT = y(3π/4) = −1

Vậy trên R ta có:

yCĐ = y(π/4 + kπ) = 1;

yCT = y(3π/4 + kπ) = −1, k∈Z

b) Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

yCĐ = y(−π4 + k2π) = 2;

yCT = y(3π4 + k2π) = −2 (k∈Z).

c) Ta có:


Do đó, hàm số đã cho tuần hoàn với chu kỳ π.

Ta xét hàm số y trên đoạn [0;π]:


y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = kπ/2 (k∈Z)

Lập bảng biến thiên trên đoạn [0,π]


Từ đó, ta thấy hàm số đạt cực tiểu tại x = kπ/2 với k chẵn, đạt cực đại tại x = kπ/2 với k lẻ, và

yCT = y(2mπ) = 0; yCT = y(2mπ) = 0;

yCĐ = y((2m+1)π/2) = 1 (m∈Z)

Lời giải

TXĐ: D = R

y’ = 3x2 + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3x2 + 4mx + m có hai nghiệm phân biệt.

⇔ Δ’ = 4m2 -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

476 Đánh giá

50%

40%

0%

0%

0%