Giải sbt Giải tích 12 Bài tập ôn tập chương 1

45 người thi tuần này 4.6 1.9 K lượt thi 22 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a) y = 4x3 + x, y′ = 12x2 + 1 > 0, ∀ x ∈ R

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12x02 + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1

Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8

c) Vì y’ = 12x2 + m nên m ≥ 0; y” = –6(m2 + 5m)x + 12m

    +) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).

Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6(m2 + 5m)x + 12m

    +) Với m < 0 thì y = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

y’ > 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ < 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số (1) đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và nghịch biến trên khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

a) y = –(m2 + 5m)x3 + 6mx2 + 6x – 5

y′ = –3(m2 + 5m)x2 + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với m2 + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36m2 + 18(m2 + 5m) ≤ 0 ⇔ 3m2 + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3(m2 + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3m2 – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6(m2 + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

Lời giải

a) Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = (a - 1)x2 + 2ax + 3a - 2.

Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.

Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(y' = 0 chỉ tại x = -2, khi a = 2).

Vậy với a ≥ 2 hàm số luôn đồng biến

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình

(a - 1)x2 + 3ax + 9a - 6 = 0

Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ trên, ta được:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔ x2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

a) TXĐ: D = R

Sự biến thiên:

y′ = 3x2 – 6x = 3x(x – 2)

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên mỗi khoảng (–;0), (2;+)

Hàm số nghịch biến trên khoảng (0; 2).

Hàm số đạt cực đại tại x = 0 ; yCĐ = y(0) = 0

Hàm số đạt cực tiểu tại x = 2; yCT = y(2) = -4.

Giới hạn: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điểm uốn: y” = 6x – 6, y” = 0 ⇔ x = 1; y(1) = –2

Suy ra đồ thị có điểm uốn I(1; -2)

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị cắt trục hoành tại O(0;0), A(3;0). Đồ thị đi qua điểm B(-1;-4); C(2;-4).

b) x3 – 3x2 – m = 0 ⇔ x3 – 3x2 = mx3 – 3x2 – m = 0 ⇔ x3 – 3x2 = m (∗)

Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.

Lời giải

a) Học sinh tự làm

b) Ta có: y′ = –4x3 – 2x

Vì tiếp tuyến vuông góc với đường thẳng y = x/6 – 1 nên tiếp tuyến có hệ số góc là –6. Vì vậy:

–4x3 – 2x = –6

⇔ 2x3 + x – 3 = 0

⇔ 2(x3 – 1) + (x – 1) = 0

⇔ (x – 1)(2x2 + 2x + 3) = 0

⇔ x = 1(2x2 + 2x + 3 > 0, ∀x)

Ta có: y(1) = 4

Phương trình phải tìm là: y – 4 = -6(x – 1) ⇔ y = -6x + 10

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

373 Đánh giá

50%

40%

0%

0%

0%