Giải sbt Giải tích 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
35 người thi tuần này 4.6 1.3 K lượt thi 16 câu hỏi
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) TXĐ: R
y′ = 6x − 24 = 6x(1 − 4x)
y' = 0 ⇔
y' > 0 trên khoảng (0; 1/4) , suy ra y đồng biến trên khoảng (0; 1/4)
y' < 0 trên các khoảng (; 0 ); (14; ), suy ra y nghịch biến trên các khoảng (;0 ); (14;)
b) TXĐ: R
y′ = 16 + 4x − 16 − 4 = −4(x + 4)( − 1)
y' = 0 ⇔
Bảng biến thiên:
Vậy hàm số y đã cho đồng biến trên các khoảng (; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1;)
c) TXĐ: R
y′ = 3 − 12x + 9
y' = 0
y' > 0 trên các khoảng (; 1), (3; ) nên y đồng biến trên các khoảng (; 1), (3; )
y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)
d) TXĐ: R
y′ = 4 + 16 = 4x( + 4)
y' = 0 ⇔
y' > 0 trên khoảng (0; ) ⇒ y đồng biến trên khoảng (0; )
y' < 0 trên khoảng (; 0) ⇒ y nghịch biến trên khoảng (; 0)
Lời giải
a) TXĐ: R \ {-7}
y' < 0 trên các khoảng (; -7), (-7; ) nên hàm số nghịch biến trên các khoảng đó
b) TXĐ: R \ {5}
y' < 0 trên khoảng (5; ) nên y nghịch biến trên khoảng (5; )
y' > 0 trên khoảng (; 5) nên y đồng biến trên khoảng (; 5)
c) TXĐ: R \ {-3; 3}
y' < 0 trên các khoảng (; - 3), (-3; 3), (3; ) nên hàm số đã cho nghịch biến trên các khoảng đó.
d) TXĐ: R \ {0}
y' = 0 ⇔
Bảng biến thiên:
Vậy hàm số đã cho đồng biến trên các khoảng (-∞; -2), (2; +∞) và nghịch biến trên các khoảng (-2; 0), (0; 2)
e) TXĐ: R \ {-1}
y' = 0 ⇔
Vậy hàm số đã cho đồng biến trên các khoảng (; −1 − √6), (−1 + √6; ) và nghịch biến trên các khoảng (−1 − √6; −1),(−1; −1 + √6)
g) TXĐ: R \ {2}
(do x2 − 4x + 7x2 − 4x + 7 có Δ' = - 3 < 0)
Vậy hàm số đã cho đồng biến trên các khoảng (−∞;2),(2;+∞)
Lời giải
a) TXĐ: [0; +∞)
y’ = 0 ⇔ x = 100
Vậy hàm số đồng biến trên khoảng (0; 100) và nghịch biến trên khoảng (100; )
b) TXĐ: (; √6) ∪ (√6; )
y’ = 0 ⇔ x = 3 hoặc x = -3
Vậy hàm số đồng biến trên các khoảng (; -3), (3; ), nghịch biến trên các khoảng (-3; −√6 − 6 ), (√6; 3).
Lời giải
a) y = x – sinx, x ∈ [0; 2π].
y′ = 1 – cosx ≥ 0 với mọi x ∈ [0; 2π]
Dấu “=” xảy ra chỉ tại x = 0 và x = 2π.
Vậy hàm số đồng biến trên đoạn [0; 2π].
c) Xét hàm số y = sin(1/x) với x > 0.
Giải bất phương trình sau trên khoảng (0; ):
Do đó, hàm số đồng biến trên các khoảng
Và nghịch biến trên các khoảng
với k = 0, 1, 2 …
Lời giải
a) Tập xác định: D = R \ {m}
Hàm số đồng biến trên từng khoảng (; m), (m; ) khi và chỉ khi:
⇔ − + 4 > 0
⇔ < 4 ⇔ −2 < m < 2
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′ = −3 + 2mx – 3 ≤ 0
⇔ y′ = – 9 ≤ 0
⇔ ≤ 9 ⇔ −3 ≤ m ≤ 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.