Giải sbt Giải tích 12 Bài 5: Phương trình mũ và phương trình lôgarit

37 người thi tuần này 4.6 1.5 K lượt thi 13 câu hỏi

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) Hướng dẫn: Lấy logarit cơ số 2 cả hai vế

Phương trình đã cho có hai nghiệm phân biệt đều thỏa mãn điều kiện

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

a) 16.2x + 4.2x = 5.5x + 3.5x

⇔ 20.2x= 8.5x ⇔ (2/5)x = (2/5)1 ⇔ x = 1

b) 16.7x − 16.52x = 0

⇔ 7x = 52x ⇔ (7/25)x = (7/25)0 ⇔ x = 0

c) Chia hai vế cho 12x(12x > 0), ta được:

4(3/4)x + 1 − 3(4/3)x = 0

Đặt t = (3/4)x (t > 0), ta có phương trình:

4t + 1 − 3/t = 0 ⇔ 4t2 + t − 3 = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, (3/4)x = (3/4)1. Vậy x = 1.

d) Đặt t = 2x (t > 0), ta có phương trình:

t3 + 2t2 + t – 2 = 0

⇔ (t − 1)(t + 1)(2 − t) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

a) Với điều kiện x > 0, ta có

logx + 2logx = log9 + logx

⇔ logx = log3 ⇔ x = 3

b) Với điều kiện x > 0, ta có

4logx + log4 + logx = 2log10 + 3logx

⇔ logx = log5 ⇔ x = 5

c) Ta có điều kiện của phương trình đã cho là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Khi đó, phương trình đã cho tương đương với:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

= log416 ⇔ x2 − 4 = 16

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Cả hai nghiệm trên đều thỏa mãn điều kiện (1).

d) Với điều kiện x > 2, ta có phương trình

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Cả hai giá trị này đều thỏa mãn điều kiện x > 2.

Câu 4

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

a) log2(2x+1) .log2[2(2x+1)] = 2

⇔ log2(2x+1). [1 + log2(2x+1)] = 2

Đặt t = log2(2x+1), ta có phương trình

t(1 + t) = 2 ⇔ t2 + t – 2 = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Với điều kiện x >0, ta có: log(xlog9) = log(9logx)

log(xlog9) = log9.logx và log(9logx) = logx.log9

Nên log(xlog9) = log(9logx)

Suy ra: xlog9 = 9logx

Đặt t = xlog9, ta được phương trình 2t = 6 ⇔ t = 3 ⇔ xlog9 = 3

⇔ log(xlog9) = log3

⇔log9.logx = log3

⇔logx = log3/log9 ⇔ logx = 1/2

⇔ x = 10 (thỏa mãn điều kiện x > 0)

c) Với điều kiện x > 0, lấy logarit thập phân hai vế của phương trình đã cho, ta được:

(3log3x − 2logx/3).logx = 7/3

Đặt t = logx, ta được phương trình 3t4 − 2t2/3 – 7/3 = 0

⇔ 9t4 − 2t2 − 7 = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) Đặt t = log5(x+2) với điều kiện x + 2 > 0, x + 2 ≠ 1, ta có:

1 + 2/t = t ⇔ t2 – t – 2 = 0 , t ≠ 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

304 Đánh giá

50%

40%

0%

0%

0%