Câu hỏi:

12/07/2024 571

Cho hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

b) Viết phương trình các đường thẳng đi qua O(0;0) và tiếp xúc với (C) .

c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Học sinh tự làm

b) Phương trình tiếp tuyến tại điểm M0(x0; y0) là:

y – y0 = y’(x0)(x – x0)

Trong đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để đường thẳng đó đi qua O(0; 0), điều kiện cần và đủ là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ x0 = –1 - 3 hoặc x0 = –1 + 3

    +) Với x0 = –1 + 3, ta có phương trình tiếp tuyến:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Với x0 = –1 – 3, ta có phương trình tiếp tuyến:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Để tìm trên (C) các điểm có tọa độ nguyên ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điều kiện cần và đủ để M(x, y) ∈ (C) có tọa độ nguyên là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

tức (x – 2) là ước của 9.

Khi đó, x – 2 nhận các giá trị -1; 1; -3; 3; -9; 9 hay x nhận các giá trị 1; 3; -1; 5; -7; 11.

Do đó, ta có 6 điểm trên (C) có tọa độ nguyên là: (1;-6), (3;12), (-1;0), (5;6), (-7;2), (11;4).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số : y = x3 – 3x2

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

b) Tìm các giá trị của tham số m để phương trình: x3 – 3x2 – m = 0 có ba nghiệm phân biệt.

(Đề thi tốt nghiệp THPT năm 2008).

Xem đáp án » 12/07/2024 23,856

Câu 2:

Cho hàm số: y = –(m2 + 5m)x3 + 6mx2 + 6x – 5

a) Xác định m để hàm số đơn điệu trên R. Khi đó, hàm số đồng biến hay nghịch biến? Tại sao?

b) Với giá trị nào của m thì hàm số đạt cực đại tại x = 1 ?

Xem đáp án » 12/07/2024 11,212

Câu 3:

Số giao điểm của đồ thị hàm số y = (x − 3)(x2 + x + 4) với trục hoành là:

A. 2;              B. 3;

C. 0;              D. 1

Xem đáp án » 12/07/2024 3,822

Câu 4:

Cho hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) Xác định a để hàm số luôn đồng biến.

b) Xác định a để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.

c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với a = 3/2.

Từ đó suy ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem đáp án » 12/07/2024 2,309

Câu 5:

Cho hàm số: y = 4x3 + mx (m là tham số) (1)

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với m = 1.

b) Viết phương trình tiếp tuyến của (C) song song với đường thẳng y = 13x + 1.

c) Xét sự biến thiên của hàm số (1) tùy thuộc vào giá trị m.

Xem đáp án » 12/07/2024 1,901

Câu 6:

Tọa độ giao điểm của đồ thị các hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và y = x + 1 là:

A. (2; 2);              B. (2; -3);

C(-1; 0);              D. (3; 1).

Xem đáp án » 12/07/2024 1,871

Câu 7:

Xác định giá trị của tham số m để hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nghịch biến trên mỗi khoảng xác định của nó

A. m = −1;              B. m > 1;

C. m ∈ (−1;1);              D. m ≤ −5/2.

Xem đáp án » 12/07/2024 1,605

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn