Câu hỏi:

13/07/2024 8,357

Cho hàm số y = -x4 + 4x2 - 3. Khẳng định nào sau đây là đúng?

A. Hàm số có một cực đại và một cực tiểu

B. Hàm số có hai cực đại và một cực tiểu

C. Hàm số chỉ có một cực tiểu

D. Hàm số chỉ có một cực đại

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: B.

Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = ax4 + bx2 + c có hai cực đại, một cực tiểu.

Ở đây y' = -4x3 + 8x; y' = 0 ⇔ -4x(x2 - 2) = 0

 

 Giải sách bài tập Toán 12 | Giải sbt Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: C.

Tập xác định: D = R. y' = 3x2 - 6x + m.

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên R

⇔ 3x2 - 6x + m = 0 có hai nghiệm phân biệt

Δ' = 9 - 3m > 0 3m < 9 m < 3

Lời giải

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3x2 − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và yCT = y(1) = (16/3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP