Cho đường tròn (C) ngoại tiếp một tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH, ta được một mặt cầu. Thể tích của khối cầu tương ứng là:
A.
B.
C.
D.
Quảng cáo
Trả lời:
Chọn C

AH là đường cao trong tam giác đều cạnh a nên
Gọi O là tâm mặt cầu ngoại tiếp ΔABC, thì O ∈ AH và 
Bán kính mặt cầu được tạo thành khi quay đường tròn (C) quanh trục AH là 
Vậy thể tích của khối cầu tương ứng là:

Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi A là một điểm thuộc đường tròn đáy hình nón.
Theo giải thiết ta có đường sinh và góc giữa đường sinh và mặt phẳng đáy là .
Trong tam giác vuông SAO, ta có:


Lời giải
Chọn A.


Hình nón tròn xoay được tạo thành là một hình nón có bán kính đáy là R = AC, đường cao h = SA có thể tích là:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.