Câu hỏi:

09/07/2020 5,566

Giải hệ phương trình x+3y=1a2+1x+6y=2a trong mỗi trường hợp sau:

a) a = -1;    b) a = 0;    c) a = 1.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1

Ta có: Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) rút ra được x = 1 – 3y (*)

Thay vào phương trình (2) ta được :

a) a = -1, phương trình (**) trở thành : 0y = 4

Phương trình trên vô nghiệm

Vậy hệ phương trình khi a = -1 vô nghiệm.

b) a = 0, phương trình (**) trở thành -3y = 1 ⇔ 

Thay Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 vào (*) ta được x = 2.

Vậy hệ phương trình khi a = 0 có nghiệm duy nhất Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) a = 1, phương trình (**) trở thành: 0y = 0

Phương trình nghiệm đúng với mọi y.

Vậy hệ phương trình khi a = 1 có vô số nghiệm dạng (1 – 3y; y) (y ∈ R).

Cách 2

a) Thay a = -1 vào hệ phương trình ta được hệ phương trình mới:

Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình vô nghiệm khi a= - 1.

b) Thay a = 0 vào hệ phương trình ta được hệ phương trình mới:

Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Thay a=1 vào hệ phương trình ta được hệ phương trình mới:

Giải bài 15 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy với a= 1 hệ phương trình có vô số nghiệm với nghiệm tổng quát là (-3y+1;y),(y ∈ R)

Kiến thức áp dụng

+ Giải hệ phương trình Giải bài 12 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 ta làm như sau:

Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

+ Nếu xuất hiện phương trình dạng 0x = a (hoặc 0y = a) thì ta kết luận hệ phương trình vô nghiệm nếu a ≠ 0 hoặc hệ có vô số nghiệm nếu a = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Xác định các hệ số a và b, biết rằng hệ phương trình 2x+by=4bxay=5 có nghiệm (1 ; -2).

b) Cũng hỏi như vậy nếu phương trình có nghiệm là (√2 - 1; √2)

Xem đáp án » 13/07/2024 13,699

Câu 2:

Giải các hệ phương trình sau bằng phương pháp thế:

a)3xy=55x+2y=23b)3x+5y=12xy=8c)xy=23x+y10=0

Xem đáp án » 09/07/2020 2,062

Câu 3:

Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0. Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và x – 3:

P(x) = mx3 + (m  2)x2  (3n  5)x  4n

Xem đáp án » 13/07/2024 895

Câu 4:

Giải các hệ phương trình sau bằng phương pháp thế:

a)x2y3=1x+y3=2b)x22y=5x2+y=110c)(21)xy=2x+(2+1)y=1

Xem đáp án » 13/07/2024 858

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store