Câu hỏi:

18/07/2020 448 Lưu

Cho tứ diện ABCD có các cạnh AB, AC và AD đôi một vuông góc với nhau, AB = 6a, AC = 5a, AD = 4a. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CD, DB. Thể tích V của tứ diện AMNP là:

A. V=5a33.

B. V=20a33.

C. V=5a3

D. V=10a3

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C.

Phương pháp: 

+) Thể tích khối tứ diện OABC có OA, OB, OC đôi một vuông góc và có độ dài các cạnh đó lần lượt  là a, b, c là: V=16abc

Cách giải:


CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 35a4b

B. 35a4b5

C. 35a6b4

D. 35a6b4

Lời giải

Chọn D.

Phương pháp: 

Áp dụng Công thức khai triển nhị thức Newton: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. min y = 1, max y = 3

B. min y = 1, max y = 5

C. min y = 2, max y = 3

D. min y = -1, max y = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP