Câu hỏi:

25/07/2020 933 Lưu

Cho hàm số y=ax3+bx2+cx+d(a0), có đồ thị (C)  Với điều kiện nào của a để cho tiếp tuyến của đồ thi (C)tại điểm có hoành độ x0=b3a là tiếp tuyến có hệ số góc nhỏ nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Có  y'=3ax2+2bx+c. Hệ số góc tiếp tuyến tại x=b3a  có hệ số góc nhỏ nhất khi nó là đỉnh của biểu thức bậc hai 3ax2+2bx+c và biểu thức này có giá trị nhỏ nhất, tức là a>0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Ta có

 f'x=msin x+2cosx3;y'=0msin x+2cosx=3 

Phương trình này giải được với điều kiện là

m2+2232m25m;55;+

Lời giải

Đáp án B

Ta gọi giá bán là xx20   khi đó giá bán giảm 20-x, khi đó số lượng chiếc mũ bán được là 25+20x2.40=42520x  chiếc.

Khi đó lợi nhuận là

x42520x1042520x=20x2+625x4250 .

Đây là biểu thức bậc 2 đạt giá trị lớn nhất khi x=b2a=15,625.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP