Câu hỏi:

26/07/2020 970 Lưu

Tìm các giá trị thực của tham số m để phương trình sinx1cos2xcosx+m=0  có đúng nghiệm thuộc đoạn 0;2π.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

 sinx1cos2xcosx+m=0sinx=1 1cos2xcosx+m=02              

Trong 0;2π  thì phương trình (1) chỉ có 1 nghiệm x=π2   nên để phương trình ban đầu có 4 nghiệm thì phương trình 2 phải có 4 nghiệm phân biệt tức là phương trình t2t+m=0*  phải có 2  nghiệm trong khoảng 1;1  và khác 0

(*) m=tt2 . Lập bảng biến thiên của vế trái.

 

Vậy điều kiện của m là m0;14 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Có y'=6x2+2bx+c  .

Hàm số đạt cực tiểu tại điểm M1;6y'1=0y1=62b+c=6b+c=9b=3c=12 .

Khi đó y'=6x2+6x12;y'=0x=1x=2 . Lập bảng xét dấu thì hàm sô đạt cực đại tại x=-2. Điểm cực đại là 2;21

Lời giải

Đáp án  C

vt=S'=6t2+36t+2 . Đây là hàm số bậc hai có a<0 nên nó sẽ đạt giá trị lớn nhất tại t=b2a=3s  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP