Câu hỏi:

04/08/2020 587 Lưu

Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác xuất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.

A.12.8C123

B.C12812.8C123

C.C1231212.8C123

D.12+12.8C123

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh:C123

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác

+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác

Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C123128.12

Vậy kết quả là C123128.12C123

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.42016

B.22016+1

C.420161

D.220161

Lời giải

Đáp án D

 Xét

 1+x2016=C20160+C20161x+C20162x2+C20163x3+...+C20162016x2016

chọn x=1 ta có

1+12016=C20160+C20161+C20162+C20163+...+C2016201622016C20160=C20161+C20162+C20163+...+C20162016C20161+C20162+C20163+...+C20162016=220161

Lời giải

Chọn B.

MGABCNHBCDABCBCD=BCNHMG=IIBC

vậy B, I, C  thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số liên tục tại mọi điểm trừ các điểm thuộc đoạn 0;1. 

B. Hàm số liên tục tại mọi điểm trừ điểm x=0

C. Hàm số liên tục tại mọi điểm điểm thuộc R

D. Hàm số liên tục tại mọi điểm trừ điểm x=1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP