Câu hỏi:
04/08/2020 452Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác xuất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh:
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là
Vậy kết quả là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho hình tứ diện ABCD có M,N lần lượt là trung điểm của AB,BD Các điểm G,H lần lượt trên cạnh AC, CD sao cho NH cắt MG tại I Khẳng định nào sau đây là khẳng định đúng?
Câu 4:
Cho hình chóp tứ giác đều S.ABCD có chiều cao bằng h, góc giữa hai mặt phẳng bằng bằng Tính thể tích của khối chóp S.ABCD theo
Câu 7:
Cho đồ thị . Tất cả giá trị của tham số m để cắt trục hoành tại ba điểm phân biệt có hoành độ thỏa
về câu hỏi!