Câu hỏi:

04/08/2020 882 Lưu

Đồ thị hàm số nào sau đây có ba đường tiệm cận ?

A.y=12x1+x

B.y=14x2

C.y=x+35x1

D.y=xx2x+9

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Với hàm số  y=14x2 ta có limxy=limx+y=0  Tiệm cận ngang của đồ thị hàm số là  y=0

Mặt khác

limx2+y=+;limx2y=x=2   

là tiệm cận đứng của đồ thị hàm số.

 limx2+y=;limx2y=+x=2

cũng là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số  y=14x2 có 3 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.42016

B.22016+1

C.420161

D.220161

Lời giải

Đáp án D

 Xét

 1+x2016=C20160+C20161x+C20162x2+C20163x3+...+C20162016x2016

chọn x=1 ta có

1+12016=C20160+C20161+C20162+C20163+...+C2016201622016C20160=C20161+C20162+C20163+...+C20162016C20161+C20162+C20163+...+C20162016=220161

Lời giải

Đáp án A

Ta có sin(2xπ4)=sin(x+3π4)

2xπ4=x+3π4+k2π2xπ4=πx3π4+k2π, kx=π+k2π3x=π2+k2π, k

x=π+k2πx=π6+kπ3, k

Vì nghiệm của phương trình thuộc 0;π  nên ta có:

0<π+k2π<π0<π6+k2π3<π12<k<014<k<54

k nên ta có k = 0 và k = 1 ứng với các nghiệm: x=π6,x=5π6.

Vậy tổng nghiệm của phương trình là π6+5π6=π

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số liên tục tại mọi điểm trừ các điểm thuộc đoạn 0;1. 

B. Hàm số liên tục tại mọi điểm trừ điểm x=0

C. Hàm số liên tục tại mọi điểm điểm thuộc R

D. Hàm số liên tục tại mọi điểm trừ điểm x=1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP