Một con quạ đang khát nước, nó tìm thấy một cái lọ có nước nhưng cổ lọ lại cao không thò mỏ vào uống được. Nó nghĩ ra một cách, nó gắp từng viên bi (hình cầu) bỏ vào trong lọ để nước dâng lên mà tha hồ uống. Hỏi con quạ cần bỏ vào lọ ít nhất bao nhiêu viên để có thể uống nước? Biết rằng mỗi viên bi có bán kính là 3/4 (đvđd) và không thấm nước, cái lọ có hình dáng là một khối tròn xoay với đường sinh là một hàm đa thức bậc ba, mực nước bạn đầu trong lọ ở vị trí mà mặt thoáng tạo thành hình tròn có bán kính lớn nhất R = 3, mực nước quạ có thể uống là vị trí mà hình tròn có bán kính nhỏ nhất r = 1 và khoảng cách giữa 2 mặt này bằng 2, được minh họa như hình vẽ sau:
A. 17
B. 16
C. 15
D. 18
Quảng cáo
Trả lời:
Đáp án B
Phương pháp:
- Gắn hệ trục tọa độ Oxy, xác định phương trình hàm số bậc ba.
- Ứng dụng tích phân vào tính thể tích.
Cách giải:
Gắn hệ trục tọa độ Oxy như hình vẽ.
Gọi phương trình của đường sinh là:
Theo đề bài, ta có: (C) có điểm cực đại (0;3), điểm cực tiểu là (2;1)
Từ (1),(2),(3) và (4)
Thể tích đã cho vào:
Thể tích 1 viên bi là
Cần số viên bi: (viên)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Phương pháp:
- Sử dụng phương pháp tọa độ hóa.
- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:
Cho có VTCP và qua M; ' có VTCP và qua M’
Cách giải:
Gắn hệ trục tọa độ như hình vẽ, trong đó:
A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)
A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)
Đường thẳng AM có VTCP và qua A(0;0;a)
Đường thẳng DB’ có VTCP và qua D(a;0;a)
Khoảng cách giữa hai đường thẳng AM và DB’:
Ta có:
Vây, khoảng cách giữa AM và DB’ là
Lời giải
Đáp án A
Phương pháp: Xác định đường phân giác của góc tạo bởi hai đường thẳng cắt nhau a và b trong không gian:
- Lấy hai vectơ lần lượt là các VTCP của đường thẳng a, b (có cùng độ dài).
- Tìm giao điểm M của a và b.
- Phân giác của góc tạo bởi hai đường thẳng a và b là đường thẳng qua M và có VTCP là hoặc
Cách giải:
Tìm giao điểm M của
Giải hệ phương trình
có 1 VTCP là
có 1 VTCP là
Suy ra, đường phân giác góc nhọn tạo bởi 1 2 d d, có 1 VTCP là
Phương trình đường phân giác cần tìm là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 210
B. 20
C. 120
D. 35
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.