Câu hỏi:

19/08/2020 482

Cho hàm số y=f(x) có đồ thị như hình vẽ.

Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y=fx+m có 5 điểm cực trị.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Dựa vào đồ thị hàm số, dễ thấy hàm số fx=x3+3x21

Xét hàm số fx+m=x+m3+3x+m1 với x

Chú ý : Cực trị là điểm làm y' đổi dấu và fx=x=x2f'x=2x2x2=xx

Do đó fx+m=3x+mx+m+2.xx.

Khi đó y=fx+m có 5 điểm cực trị x+m=0x+m+2=0có 4 nghiệm phân biệt x=mx=2mcó 4 nghiệm m>02m>0m<2

Cách 2: Đồ thị hàm số y=fx+m được suy ra từ

 y=fxy=fx+my=fx+m.

Đồ thị hàm số muốn có 5 điểm cực trị khi ở bước thứ 1ta dịch chuyển đồ thị sang phải nhiều hơn 2 đơn vị m<2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hàm số y = sin x đồng biến trên D khi y' = cos x > 0, \[\forall x \in D\].

Lại có bất phương trình cos x > 0 có nghiệm: \[x \in \left( { - \frac{\pi }{2} + k2\pi ;\,\,\frac{\pi }{2} + k2\pi } \right)\,,\,\,k \in \mathbb{Z}\].

Với k = 5 thì \[x \in \left( {\frac{{19\pi }}{2};\,\,\frac{{21\pi }}{2}} \right)\].

Mà \[\left( {\frac{{19\pi }}{2};\,\,10\pi } \right) \subset \left( {\frac{{19\pi }}{2};\,\,\frac{{21\pi }}{2}} \right)\].

Do đó hàm số y = sin x đồng biến trên \[\left( {\frac{{19\pi }}{2};\,\,10\pi } \right)\].

Trên các đoạn \[\left( {7\pi ;\,\,\frac{{15\pi }}{2}} \right)\]; \[\left( { - \frac{{7\pi }}{2};\,\, - 3\pi } \right)\]; \[\left( { - 6\pi ;\,\, - 5\pi } \right)\] ta kiểm tra được cos x < 0.

Do đó hàm số y = sin x nghịch biến trên các khoảng này.

Đáp án C.

Câu 2

Lời giải

Đáp án C

Ta có: log2012=log212log220=log222.3log222.5=2+log232+log25

Mặt khác log23.log35=ab.

Suy ra log2012=a+2ab+2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP