Câu hỏi:

11/08/2020 551

Cho các số thực dương a,b thỏa mãn a23>a35 logb23<logb35. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Cách 1: Tư duy tự luận

Ta có a23>a3523>35a>1 logb23<logb35.23>350<b<1. Vậy  logab<0logba<0

Cách 2: Sử dụng máy tính cầm tay

Chọn các giá trị

a=0,50;1;a=1,5(1;+);b=0,3(0;1);b=1,3(1;+) 

Ta chọn được các giá trị a =1,5 và b = 0,3 thỏa mãn điều kiện.

Ấn tiếp 

Vậy logaB<0 và logba<0.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B.

*Đa giác lồi (H) có 22 cạnh nên cũng có 22 đỉnh. Số tam giác có 3 đỉnh là đỉnh của đa giác (H) là C223=1540 (tam giác)

Suy ra số phàn tử của không gian mẫu Ωn(Ω)=C15402. 

*Số tam giác của một cạnh là cạnh của đa giác (H) là 22.18 = 396 (tam giác).

Số tam giác có hai cạnh là cạnh của đa giác (H) là 22 (tam giác)

Số tam giác không có cạnh nào là cạnh của đa giác (H) là:

154039622=1122(tam giác).

Gọi A là biến cố “Hai tam giác được chọn có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H)”

Số phần tử của A là n(A)=C3961.C11221. 

*Vậy xác suất cần tìm là

P(A)=n(A)n(Ω)=C3961.C11221C15402=74819950,375. 

Lời giải

Đáp án B

Từ giả thiết ta có

b2=aca+c=2(b+8)b+82=a(c+64)b2=aca+c=2(b+8)b+82=b2+64ab2=acc=7a+8b=4a4 

 4a -42=a7a +8c= 7a+8b=4a-49a2-40a+16=0c= 7a+8b=4a-4a=4;b=12;c=36a=49;b=-209;c=1009

Do a,b,c tạo thành một dãy số tăng nên a=4;b=12;c=36  .

Suy ra  

ab+2c=412+2.36=64.

Câu 3

Nguyên hàm sinx2dx bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay