Câu hỏi:

11/08/2020 141

Dynano là một nhà ảo thuật gia đại tài người Anh nhưng người ta thường nói Dynano làm ma thuật chứ không phải làm ảo thuật. Bất kì màn trình diễn nào của anh chàng trẻ tuổi tài cao này khiến người xem kinh ngạc vì nó vượt qua giới hạn khoa học. Một lần đến NewYork anh ngẫu hứng trình diễn khả năng bay lơ lửng trong không trung của mình bằng cách di chuyển từ tòa nhà này đến tòa nhà khác và trong quá trình di chuyển đó có một lần anh đáp đất tại một điểm trong khoảng cách giữa hai tòa nhà (biết mọi di chuyển của anh đều là đường thẳng). Biết tòa nhà ban đầu Dynano đứng có chiều cao là a(m), tòa nhà sau đó Dynano đến có chiều cao là b(m) (a < b) và khoảng cách giữa hai tòa nhà là c(m). Vị trí đáp đất cách tòa nhà thứ nhất là một đoạn là x(m). Hỏi x bằng bao nhiêu quãng đường di chuyển của Dynano là bé nhất?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Màn biểu diễn của Dynano được biểu diễn theo mô hình bên

Cách 1: Áp dụng kiến thức “Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số”

Ta có  AB=c,AC=a,AD=b,AM=x.Khi đó CM=AC2+AM2=x2+a2

MD=BM2+BD2=(cx)2+b2=x22cx+b2+c2 

Như vậy quãng đường di chuyển của Dynano là 

T=CM+MD=x2+a2+x22cx+b2+c2(0<x<c).

Xét hàm số x2+a2+x22cx+b2+c2trên (0;c). 

Đạo hàm f'(x)=xx2+a2+xcx22cx+b2+c2=0 

xx22cx+b2+c2=(cx)x2+a2x2cx2+b2=cx2x2+a2 

x2b2=c-x2a2bx=(cx)ax=aca+b(0;c).

Lập bảng biến thiên tìm ta được f(x)  đạt nhỏ nhất khi  x=aca+b.

Cách 2: Dùng kiến thức hình học

Gọi D' là điểm đối xứng với D qua AB. Khi đó MC+MD=MC+MD'CD' . Do vậy (MC+MD)min=CD' . Dấu =  xảy ra khi MCD' hay M=CD'AB .

Khi đó ΔAMCBMD'

 AMBM=ACBD'xcx=abx=aca+b

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đa giác lồi (H) có 22 cạnh. Gọi X là tập hợp của các tam giác có 3 đỉnh là ba đỉnh của (H). Chọn ngẫu nhiên hai tam giác trong X. Tính xác suất để chọn được 1 tam giác có 1 cạnh là cạnh của đa giác (H) và 1 tam giác không có cạnh nào là cạnh của đa giác (H) (Kết quả làm tròn đến số thập phân thứ ba)

Xem đáp án » 11/08/2020 10,539

Câu 2:

Cho dãy số tăng a, b, c theo thứ tự thành lập cấp số nhân, đồng thời a,b+8,c tạo thành cấp số cộng và a,b+8,c+64 lập thành cấp số nhân. Khi đó giá trị  của ab+2c  bằng 

Xem đáp án » 11/08/2020 5,189

Câu 3:

Số giao điểm của hai đồ thị hàm số f(x)=2(m+1)x3+2mx32(m+1)x2m, (m là tham số khác 34) và g(x)=x4+x2 là 

Xem đáp án » 11/08/2020 1,917

Câu 4:

Cho số phức z=a+bi thỏa mãn điều kiện z2+4=2z. Đặt P=8(b2a2)12. Mệnh đề nào dưới đây đúng?

Xem đáp án » 11/08/2020 1,358

Câu 5:

Nguyên hàm sinx2dx bằng

Xem đáp án » 11/08/2020 1,214

Câu 6:

Cho tứ diện ABCDBC=CD=BD=2a, AC=a2,AB=a.Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là

Xem đáp án » 11/08/2020 969

Câu 7:

Cho hàm số f(x) có đạo hàm trên [0;3],f(0)=2 và 03f'(x)dx=5.Tính f(3) 

Xem đáp án » 11/08/2020 960

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store