Câu hỏi:

16/08/2020 216 Lưu

Tìm giá trị của tham số m để phương trình sinx1cos2xcosx+m=0 có đúng 5 nghiệm thuộc đoạn 0;2π

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương trình 

sinx1cos2xcosx+m=0sinx=1m=cosxcos2xx=π2+k2π           1m=cosxcos2x   2

x0;2π nên

0π2+k2π2π14k34k=0x=π2

Để phương trình đã cho có 5 nghiệm thuộc đoạn 0;2π2 có 4 nghiệm phân biệt thuộc 0;2π

Đặt t=cosx1;1, khi đó 2t2t+m=0 có 2 nghiệm phân biệt t1,t2 thỏa mãn 1<t1;t2<1

t1+1t2+1>0t11t21>0Δ=124m>0t1t2+t1+t2+1>0t1t2t1+t2+1>04m1<00<m<14

Vậy m0;14

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Điều kiện x>0

PTlog22x5log2x+6=0log2x2log2x3=0log2x=2log2x=3x=4x=8

Tổng các nghiệm là 4+8=12

Lời giải

Đáp án A

Điều kiện

x>1mx>8.PTlog2x12=log2mx8x22+mx+9=0

Để PT đã cho có 2 nghiệm thực phân biệt thì

Δ=2+m236=m4m+8>0x1+x2=m+2>2x11x21=x1x2x1+x2+1=8m>04<m<8

Vậy có tất cả 3 giá trị nguyên của tham số m thỏa đề bài

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP