Câu hỏi:

16/08/2020 419

Để chào mừng ngày Nhà giáo Việt Nam 20 - 11, Đoàn trường THPT ĐVH đã phân công ba khối: khối 10, khối 11 và khối 12 mỗi khối chuẩn bị ba tiết mục gồm một tiết mục múa, một tiết mục kích và một tiết mục tốp ca. Đến ngày tổ chức, ban tổ chức chọn ngẫu nhiên ba tiết mục. Tính xác suất để ba tiết mục được chọn có đủ cả ba khối và đủ cả ba nội dung

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Chọn 3 tiết mục bất kỳ có: Ω=C93=84 cách. Gọi A là biến cố: “ba tiết mục được chọn có đủ cả ba khối và đủ cả ba nội dung”. Khối 10 chọn 1 tiết mục có 3 cách, khối 11 chọn 1 tiết mục khác khối 10 có 2 cách, tương tự khối 12 có 1 cách. Ta có: ΩA=3.2.1=6 cách.

 Vậy P=684=114.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương trình hoành độ giao điểm của C và d

xx1=mxx1x2mx+m=0  *.

Để Ccắt d tại hai điểm phân biệt * có hai nghiệm phân biệt khác 1m>4m<0. 

Khi đó, gọi điểm Ax1;mx1 và Bx2;mx2 là giao điểm của đồ thị C và d.

OA=2x122m.x1+m2=2x12mx1+m+m22m=m22mOB=2x222m.x2+m2=2x22mx2+m+m22m=m22m 

Khoảng cách từ O đến AB bằng

h=dO;d=m2SΔABC=12.h.AB=m22.AB 

Ta có

SΔABC=abc4RR=abc4.SΔABC=OA.OB.AB2.h.AB=OA.OB2.h42.m2=OA.OBOA2.OB2=16m2

Khi đó m22m2=16m2m22m=4mm22m=4mm=0m=2m=6. 

Kết hợp với điều kiện m>4m<0, ta được m=2m=6 là giá trị cần tìm

Lời giải

Đáp án D

Đồ thị hàm số y=fx=xx21x24x29 cắt trục hoành tại các điểm 3;2;1;0;1;2;3 phác họa đồ thị suy ra đồ thị hàm số có 6 điểm cực trị (giữa khoảng 2 nghiệm có 1 điểm cực trị). Do đó phương trình f'x=0 có 6 nghiệm phân biệt

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho dãy số un thỏa mãn u1=2un+1=un+21121un,n* Tính u2018.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay