Từ miếng tôn hình vuông cạnh bằng 4dm. Người ta cắt ra hình quạt tâm O bán kính dm (hình vẽ) để cuộn lại thành một chiếc phễu hình nón (khi đó OA trùng với OB). Chiều cao của chiếc phếu có số đo gần đúng (làm tròn đến 3 chữ số thập phân) là
Câu hỏi trong đề: 20 Đề thi thử THPTQG môn Toán mới nhất cực hay có lời giải !!
Quảng cáo
Trả lời:
Đáp án D.
Cung AB có bán kính và số đo bằng nên có độ dài là .
Từ giả thiết ta có đỉnh của hình nón là O, đường sinh và chu vi đáy hình nón là .
Gọi I là tâm đáy, khi đó bán kính đáy của hình nón là (dm).
Do vuông tại I nên ta có
(dm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A.
Có tất cả 15 điểm được tô màu gồm 4 đỉnh của tứ diện, 6 trung điểm của 6 cạnh, 4 trọng tâm của 4 mặt bên và 1 trọng tâm của tứ diện.
Không gian mẫu là “Chọn ngẫu nhiên 4 trong số 15 điểm đã tô màu”. Số phần tử của không gian mẫu là .
Gọi A là biến cố “4 điểm được chọn đồng phẳng”. Suy ra là biến cố “4 điểm được chọn là 4 đỉnh của một hình tứ diện”. Để xác định số kết quả thuận lợi cho biến cố A ta xét các trường hợp sau:
a. 4 điểm cùng thuộc “một mặt bên của tứ diện”
Một mặt bên có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên một mặt bên là (cách).
Có tất cả 4 mặt bên nên số cách chọn thỏa mãn trường hợp a. là (cách).
b. 4 điểm cùng thuộc mặt phẳng “chứa 1 cạnh của tứ diện và trung điểm của cạnh đối diện:.
Mặt phẳng đó có 7 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là (cách).
Hình tứ diện có 6 cạnh nên có tất cả 6 mặt như thế. Số cách chọn 4 điểm thỏa mãn trường hợp b. là (cách).
c. 4 điểm cùng thuộc mặt phẳng “chứa 1 đỉnh và đường trung bình của tam giác đối diện đỉnh đó”.
Mặt phẳng đó có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) trên mỗi mặt là (cách).
Do mỗi mặt bên là một tam giác có 3 đường trung bình, nên mỗi đỉnh có tương ứng 3 mặt phẳng như thế (chứa đỉnh và đường trung bình). Mà tứ diện có 4 đỉnh nên có tất cả mặt phẳng ở trường hợp c.
Vậy số cách chọn thỏa mãn trường hợp c. là (cách).
d. 4 điểm cùng thuộc mặt phẳng “chứa 2 đường nối 2 trung điểm của các cạnh đối diện”.
Có 3 đường nối 2 trung điểm của các cạnh đối diện. Số mặt phẳng được tạo thành từ 2 trong 3 đường đó là (mặt phẳng).
Mỗi mặt phẳng như thế có 5 điểm được tô màu nên số cách chọn 4 điểm (đồng phẳng) là (cách).
Vậy số cách chọn thỏa mãn trường hợp d. là (cách).
Số kết quả thuận lợi cho biến cố A là .
Vậy xác suất cần tính là
Lời giải
Đáp án A.
Cách 1: Tư duy tự luận
Các hàm số đã cho đều có tập xác định là , khi đó .
Với A:
Suy ra hàm số chẵn trên . Chọn A.
Với B:
Suy ra hàm số không chẵn, không lẻ trên . Loại B.
Với C:
Suy ra hàm số lẻ trên R . Loại C.
Với D:
Suy ra hàm số lẻ trên R . Loại D.
Cách 2: Sử dụng máy tính cầm tay
Các hàm số đều có tập xác định là R nên .
* Với A: Dùng TABLE, nhập hai hàm số và
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.