Câu hỏi:

17/08/2020 524

Có bao nhiêu điểm trên trục tung sao cho từ đó kẻ được ba tiếp tuyến khác nhau đến đồ thị hàm số y=x4x2+1?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Gọi  A0;a là điểm trên trục tung thỏa mãn yêu cầu đề bài.

Gọi k là hệ số góc tiếp tuyến đi qua A.

Lúc này ta có hệ  

x4x2+1=kx0+a4x32x=kx4x2+1=4x32xx+a

  3x4x2+a1=0(*).

Để từ A kẻ được ba tiếp tuyến khác nhau trên đồ thị hàm số  y=x4x2+1thì phương trình (*) phải có đúng 3 nghiệm phân biệt.

Điều này xảy ra khi và chỉ khi phương trình (*) có 1 nghiệm bằng 0 và 1 nghiệm dươnga=1 . Vậy có duy nhất một điểm  trên trục tung thỏa mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D.

Ta có phép quay 

QO;αA=EOA=OEOA;OE=αα=AOE^=120°

 

Lời giải

Đáp án D.

1. Tìm không gian mẫu.

Bạn Hà lấy ngẫu nhiên 2 viên bi có C62  trường hợp.

Bạn Lâm lấy ngẫu nhiên 2 viên bi trong 4 viên còn lại có C42  trường hợp.

Bạn Anh lấy 2 viên bi còn lại có 1 trường hợp.

Vậy nΩ=C62.C42=90 .

2. Gọi A là biến cố “Hai viên bi bạn Anh lấy ra có cùng màu”.

Trường hợp 1: Hai viên bi bạn Anh lấy ra có cùng màu đỏ thì số trường hợp xảy ra là C42.C22.1=6  .

Trường hợp 2: Hai viên bi bạn Anh lấy ra có cùng màu xanh thì số trường hợp xảy ra là C42.C22.1=6 

Trường hợp 3: Hai viên bi bạn Anh lấy ra có cùng màu vàng thì số trường hợp xảy ra làC42.C22.1=6 .

nA=6.3=18PA=nAnΩ=1890=15

Câu 3

Mệnh đề nào dưới đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong các biểu thức sau, biểu thức nào có nghĩa?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Nếu ba đường thẳng không cùng nằm trong một mặt phẳng và đôi một cắt nhau thì ba đường thẳng đó

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay