Câu hỏi:

19/08/2020 175 Lưu

Cho số phức z thỏa mãn điều kiện 3z3i+15. Tập hợp các điểm biểu diễn của Z tạo thành một hình phẳng. Tính diện tích S của hình phẳng đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Gọi M là điểm biểu diễn của số phức z. Xét điểm A1;3 thì theo điều kiện, ta có: 3z3i+153AM5. Vậy tập hợp các điểm biểu diễn z là phần hình phẳng nằm giữa 2 đường tròn tâm A, bán kính lần lượt là 3 và 5

S=π5233=16π.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B.

Q//P nên mặt phẳng (Q) có dạng:

2x2y+z+m=0 với m5

Mặt phẳng (P) đi qua điểm M1;1;5. Theo đề:

dP,Q=3dM,Q=32.12.1+5+m22+22+12=3m=4m=14Q:2x2y+z+4=0Q:2x2y+z14=0

Câu 2

Lời giải

Đáp án B.

0π2sinx1+3cosxdx=130π2d1+3cosx1+3cosx=ln1+3cosx3π20=Fπ2F0=ln43F0=22ln23.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP